Skip to main content
SHARE
Publication

Integrative analysis of transcriptomic and proteomic data of Shewanella oneidensis: missing value imputation using temporal d...

Publication Type
Journal
Journal Name
Molecular BioSystems
Publication Date
Page Numbers
1093 to 1104
Volume
7
Issue
7

Despite significant improvements in recent years, proteomic datasets currently available still suffer large number of missing values. Integrative analyses based upon incomplete proteomic and transcriptomic da-tasets could seriously bias the biological interpretation. In this study, we applied a non-linear data-driven stochastic gradient boosted trees (GBT) model to impute missing proteomic values for proteins experi-mentally undetected, using a temporal transcriptomic and proteomic dataset of Shewanella oneidensis. In this dataset, genes’ expression was measured after the cells were exposed to 1 mM potassium chromate for 5-, 30-, 60-, and 90-min, while protein abundance was measured only for 45- and 90-min samples. With the goal of elucidating the relationship between temporal gene expression and protein abundance data, and then using it to impute missing proteomic values for samples of 45-min (which does not have cognate transcriptomic data) and 90-min, we initially used nonlinear Smoothing Splines Curve Fitting (SSCF) to identify temporal relationships among transcriptomic data at different time points and then imputed missing gene expression measurements for the sample at 45-min. After the imputation was validated by biological constrains (i.e. operons), we used a data-driven Gradient Boosted Trees (GBT) model to uncover possible non-linear relationships between temporal transcriptomic and proteomic data, and to impute protein abundance for the proteins experimentally undetected in the 45- and 90-min sam-ples, based on relevant predictors such as temporal mRNA gene expression data, cellular roles, molecular weight, sequence length, protein length, guanine-cytosine (GC) content and triple codon counts. The imputed protein values were validated using biological constraints such as operon, regulon and pathway information. Finally, we demonstrated that such missing value imputation improved characterization of the temporal response of S. oneidensis to chromate.