Skip to main content
SHARE
Publication

Low-energy magnon dynamics and magneto-optics of the skyrmionic Mott insulator Cu2OSeO3...

Publication Type
Journal
Journal Name
Physical Review B
Publication Date
Page Number
235155
Volume
95
Issue
23

In this paper, we present a comprehensive study of the low-energy optical magnetic response of the skyrmionic Mott insulator Cu2OSeO3 via high resolution time-domain THz spectroscopy. In zero field, a new magnetic excitation (f0=2.03THz) which has not been predicted by spin-wave theory is observed and shown, with accompanying time-of-flight neutron scattering experiments, to be a zone folded magnon from the R to Γ points of the Brillouin zone. Highly sensitive polarimetry experiments performed in weak magnetic fields, μ0H<200mT, observe Faraday and Kerr rotations which are proportional to the sample magnetization, allowing for optical detection of the skyrmion phase and construction of a magnetic phase diagram. From these measurements, we extract a critical exponent of β=0.35±0.04, in good agreement with the expected value for the 3D Heisenberg universality class of β=0.367. In large magnetic fields, μ0H>5T, we observe the magnetically active uniform mode of the ferrimagnetic field polarized phase whose dynamics as a function of field and temperature are studied. In addition to extracting a geff=2.08±0.03, we observe the uniform mode to decay through a non-Gilbert damping mechanism and to possess a finite spontaneous decay rate, Γ0≈25GHz, in the zero temperature limit. Our observations are attributed to Dzyaloshinkii-Moriya interactions, which have been proposed to be exceptionally strong in Cu2OSeO3 and are expected to impact the low-energy magnetic response of such chiral magnets.