Skip to main content
SHARE
Publication

Magnetron Sputtering of Gold Nanoparticles onto WO3 and Activated Carbon...

Publication Type
Journal
Journal Name
Catalysis Today
Publication Date
Page Numbers
248 to 253
Volume
122
Issue
122

In this paper we describe the production and investigation of two supported gold catalyst systems prepared by magnetron sputtering: Au on WO3 and Au on activated carbon. The magnetron sputtering technique entails the sputtering of a high purity gold metal target, with an argon plasma, to produce a flux of gold atoms onto a constantly tumbling support material. This technique offers a number of advantages over conventional chemical preparation methods including the flexibility to create gold nanoparticles (diameters < 3 nm) on unusual support materials, such as WO3 and carbon, which are generally not accessible using the ubiquitous deposition-precipitation technique. We present data demonstrating the formation of catalytic gold nanoparticles with average diameters of 1.7 nm (Au/C) and 2.1 nm (Au/WO3) as well as a substantial number of single atom species on the Au/C sample. Prototypical carbon monoxide oxidation (Au/WO3) and glycerol oxidation (Au/C) reactions were performed in order to gauge the activity of these catalysts. The WO3 supported catalyst exhibits substantial catalytic activity from room temperature to 135oC (0.0018 - 0.082 mole CO/mole Au�sec) with an apparent transition around 75oC to a more active catalyst. The activity 1 of the Au/C catalysts was compared to a Au/C catalysts prepared from a PVA sol. The smaller catalysts prepared by sputtering are more active than the large gold particles prepared using the PVA sol. However, the larger gold catalyst are substaintially more selective towards the production of intermediate products from the oxidation of glycerol.