Skip to main content
SHARE
Publication

A nanoscale duplex precipitation approach for improving the properties of Fe-base alloys...

Publication Type
Journal
Journal Name
Nature Materials
Publication Date
Volume
N/A

The precipitate size and number density are important factors for tailoring the mechanical behaviors of nanoscale precipitate-hardened alloys. However during thermal aging, the precipitate size and number density change leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoprecipitates with unusual duplex structures in a composition-optimized multicomponent precipitation-hardened alloy, a unique approach to improve the stability of the alloy against the effects of thermal aging and consequently change in the mechanical properties. Our study provides compelling experimental evidence that these nanoscale precipitates consist of a duplex structures with a Cu-enriched bcc core that is partially encased by a B2-ordered Ni(Mn,Al) phase. This duplex structure enables the precipitate size and number density to be independently optimized, provides a more complex obstacle for dislocation movement due to the ordering and an additional interphase interface, and yields a high yield strength alloy without sacrificing the ductility.