Skip to main content
SHARE
Publication

Nanoscale fluctuation of stacking fault energy strengthens multi-principal element alloys

by Zongrui Pei, Markus Eisenbach, Peter Liaw, Mingwei Chen
Publication Type
Journal
Journal Name
Journal of Materials Science & Technology
Publication Date
Page Numbers
218 to 225
Volume
158
Issue
1

Chemical randomness and the associated energy fluctuation are essential features of multi-principal element alloys (MPEAs). Due to these features, nanoscale stacking fault energy (SFE) fluctuation is a natural and independent contribution to strengthening MPEAs. However, existing models for conventional alloys (i.e., alloys with one principal element) cannot be applied to MPEAs. The extreme values of SFEs required by such models are unknown for MPEAs, which need to calculate the nanoscale volume relevant to the SFE fluctuation. In the present work, we developed an analytic model to evaluate the strengthening effect through the SFE fluctuation, profuse in MPEAs. The model has no adjustable parameters, and all parameters can be determined from experiments and ab initio calculations. This model explains available experimental observations and provides insightful guidance for designing new MPEAs based on the SFE fluctuation. It generally applies to MPEAs in random states and with chemical short-range order.