Skip to main content
SHARE
Publication

The need for uncertainty quantification in machine-assisted medical decision making...

by Edmon Begoli, Tanmoy Bhattacharya, Dimitri Kusnezov
Publication Type
Journal
Journal Name
Nature Machine Intelligence
Publication Date
Page Numbers
20 to 23
Volume
1
Issue
1

Medicine, even from the earliest days of artificial intelligence (AI) research, has been one of the most inspiring and promising domains for the application of AI-based approaches. Equally, it has been one of the more challenging areas to see an effective adoption. There are many reasons for this, primarily the reluctance to delegate decision making to machine intelligence in cases where patient safety is at stake. To address some of these challenges, medical AI, especially in its modern data-rich deep learning guise, needs to develop a principled and formal uncertainty quantification (UQ) discipline, just as we have seen in fields such as nuclear stockpile stewardship and risk management. The data-rich world of AI-based learning and the frequent absence of a well-understood underlying theory poses its own unique challenges to straightforward adoption of UQ. These challenges, while not trivial, also present significant new research opportunities for the development of new theoretical approaches, and for the practical applications of UQ in the area of machine-assisted medical decision making. Understanding prediction system structure and defensibly quantifying uncertainty is possible, and, if done, can significantly benefit both research and practical applications of AI in this critical domain.