Skip to main content
SHARE
Publication

Non-Invasive Biophysical Techniques to Monitor the Structural Plasticity of the Photosynthetic Machinery of Live Diatom Cells

by Milan Szabo, Gergely Nagy, Gyozo Garab
Publication Type
Book Chapter
Publication Date
Page Numbers
245 to 266
Publisher Name
Wiley
Publisher Location
Hoboken, New Jersey, United States of America

The photosynthetic performance of diatoms depends largely on the organization and structural flexibility of their thylakoid membranes, the densely packed, highly organized membrane vesicles in which light reactions of photosynthesis occur. Different regulatory mechanisms that fine tune the photosynthetic functions affect the organization of the photosynthetic machinery at different levels of structural complexity, from the level of individual protein complexes to the macroarray of membrane proteins and the remodeling of the entire thylakoid membrane system. To monitor these reorganizations, non-invasive techniques are of special value. In this chapter, we focus our attention on three of these techniques, which have been demonstrated to provide unique and useful information on the structure and structural and functional plasticity of live diatom cells: (i) circular dichroism (CD) spectroscopy, which has provided unique information on the chiral (macro-)organization of protein complexes and on their rapid, reversible reorganizations, fine-tuning the light-harvesting processes, as well as on variations in the short-range excitonic interactions in the antenna complexes; (ii) small-angle neutron scattering (SANS), which has been used to determine the periodic organization of the thylakoid membranes and to monitor reversible ultrastructural changes on the time-scale of minutes, induced by variations in the environmental conditions such as changes in temperature or light intensity; and (iii) electrochromic shift absorbance transients (ΔA ECS ), a spectroscopic tool which has been shown to be capable of identifying distinct functional groups of the light-harvesting carotenoid fucoxanthin in different diatoms and in cells exposed to different light intensities. Future use of these techniques will most certainly contribute to the deeper understanding of key regulatory mechanisms of photosynthesis in diatoms.