Skip to main content
SHARE
Publication

NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS...

by Adrian Sabau, Ian Wright
Publication Type
Conference Paper
Book Title
Proceedings of the ASME Turbo Expo, vol. 2
Publication Date
Page Numbers
413 to 422
Volume
2
Conference Name
2007 ASME Turbo Expo
Conference Location
Montreal, Canada
Conference Date

Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG).
One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for the SG simulations, a second series of simulations was carried out by varying the inlet mass flow while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effect of turbine matching between the NG and SG cases was approximately 10�C, and 8 to 14% for rotor inlet temperature and total cooling flows, respectively. These results indicate that turbine-compressor matching, before and after fuel change, must be included in turbine models. The last stage of the turbine, for the SG case, experienced higher inner wall temperatures than the corresponding case for NG, with the temperature of the vane approaching the maximum allowable limit. This paper was published by ASME as paper no. GT2007-27530.