Skip to main content
SHARE
Publication

Organo-montmorillonite Barrier Layers Formed by Combustion: Nanostructure and Permeability...

by James Fox, Preejith Ambuken, Holly Stretz, Roberta A Meisner, Edward A Payzant
Publication Type
Journal
Journal Name
Applied Clay Science
Publication Date
Page Numbers
213 to 223
Volume
49
Issue
3

Self-assembly of nanoparticles into barrier layers has been the most cited theoretical explanation for the significant reduction in flammability often noted for nanocomposites formed from polymers and montmorillonite organoclays. Both mass and heat transport reductions have been credited for such improvements, and in most cases a coupled mechanism is expected. To provide validation for early models, new model barrier layers were produced from organoclays, and these barrier layers subjected to novel permeability analysis to obtain a flux. The effects of surfactant, temperature and pressure on barrier layer structure were examined. XRD versus TGA results suggest that chemical degradation of four different organoclays and physical collapse on heating are not correlated. Addition of pressure as low as 7kPa also altered the structure produced. Permeability of Ar through the ash was found to be sensitive to structural change/self assembly of high aspect ratio MMT nanoparticles. Actual fluxes ranged from 0.139 to 0.151 mol(m2.sec)-1, values which will provide useful limits in verifying models for the coupled contribution of mass and heat transfer to flammability parameters such as peak heat release rate.