Skip to main content
SHARE
Publication

Orientational Glass Formation in Substituted Hybrid Perovskites...

Publication Type
Journal
Journal Name
Chemistry of Materials
Publication Date
Page Numbers
10168 to 10177
Volume
29
Issue
23

Hybrid organic–inorganic perovskites have gained notoriety in the photovoltaic community for their composition-tunable band gaps and long-lived electronic excited states, which are known to be related to the crystalline phase. While it is known that the inorganic and organic components are coupled through structural phase transitions, it remains unclear as to what role each plays in directing the structure of hybrid perovskites such as methylammonium lead halides (CH3NH3PbX3). Here, we present crystallographic and spectroscopic data for the series (CH3NH3)1–xCsxPbBr3. CH3NH3PbBr3 behaves as a plastic crystal in the high temperature cubic phase, and substitution of CH3NH3+ with Cs+ leads to the formation of an orientational glass. While the organic molecule exhibits slow, glassy reorientational dynamics, the inorganic framework continues to undergo crystallographic phase transitions. These crystallographic transitions occur in the absence of thermodynamic signatures in the specific heat from molecular orientation transitions, which suggests that the phase transitions result from underlying instabilities intrinsic to the inorganic lattice. However, these transitions are not decoupled from the reorientations of the organic molecule, as indicated by inelastic and quasielastic neutron scattering. Observation of a reentrant phase transition in (CH3NH3)0.8Cs0.2PbBr3 permits the resolution of these complex behaviors within the context of strain mediated interactions. Together, these results provide critical insight into the coupled phase behavior and dynamics in hybrid perovskites.