Skip to main content
SHARE
Publication

Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin...

by Yang Zhang, M. Tyagi, Eugene Mamontov, Sow-hsin Chen
Publication Type
Journal
Journal Name
Journal of Physics: Condensed Matter
Publication Date
Page Number
064112
Volume
24
Issue
6

Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time τ(Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement 〈x2〉 and non-Gaussian parameter α2 extracted from the elastic scattering.