Skip to main content
SHARE
Publication

Real-Time Power Management for Microgrids With Dynamic Boundaries and Multiple Source Locations...

Publication Type
Journal
Journal Name
IEEE Access
Publication Date
Page Numbers
84120 to 84134
Volume
10
Issue
1

The dynamic boundary concept enables more flexible and efficient operation of microgrids with distributed energy resources (DER) that are intermittent in nature. As the integration of renewables continues to accelerate, an adaptive power management module that enables dynamic boundary operations in microgrids with an increasing number of source locations is essential for the fast and low-cost deployment of microgrid controllers. The power management module introduced in this paper is capable of handling the increased complexity in topological variations and transitions stemming from dynamic boundaries and multiple source locations. This includes real-time operation of multiple islands with dynamic boundaries, initiation of topological transitions (merging and separation of islands), and automatic source coordination for power sharing and frequency regulation. All functions in the power management module are designed to be automatically adaptable to arbitrary microgrids with non-meshed topologies so that the deployment of the controller at new microgrid sites can be expedited with a reduced cost. The module has been implemented on NI’s CompactRIO system as an essential part of an MG controller and tested on a converter-based hardware testbed (HTB). Testing results validated the effectiveness of the algorithms under various operating conditions.