Skip to main content
SHARE
Publication

Seasonal effects on electric vehicle energy consumption and driving range: A case study on personal, taxi, and ridesharing ve...

by Xu Hao, Hewu Wang, Zhenhong Lin, Minggao Ouyang
Publication Type
Journal
Journal Name
Journal of Cleaner Production
Publication Date
Page Number
119403
Volume
TBD
Issue
TBD

The variation in BEV energy consumption and driving range under different weather and driving conditions can affect the usefulness and consumer acceptance of these vehicles. Thus, there is a need to better understand and quantify seasonal factors that affect consumption and range under real-world driving conditions. In this paper, a dataset representing the real-world driving activity of 197 BEVs of the same model recorded over 12 months at a polling frequency of 0.1 Hz is analyzed to estimate BEV performance across different driving applications (personal driving, taxi operation, and ridesharing) and seasons (spring/autumn, summer, and winter). The results show that the electricity consumption, travel patterns, and charging patterns of BEVs vary significantly by both vehicle application and season. For example, BEV models with a range of 160 km, recharged every 1.6 days on average, can meet most trip demands of personal vehicles. However, the same BEV model when used for ridesharing or taxi purposes, is driven much more and recharged more frequently. The results also show that actual BEV electricity consumption (EC) differs significantly from the consumption predicted by the New European Driving Cycle (NEDC) test, with real-world EC being 7%–10% higher than predicted by the NEDC test cycle. Furthermore, the real-world range of personal-use BEVs in winter is only 64% of the NEDC-estimated range. The study found that, when the ambient temperature is lower than 10 °C, electricity consumption increases 2.4 kWh/100 km for every 5 °C decrease in temperature. When it is higher than 28 °C, EC increases 2.3 kWh/100 km for every 5 °C increase in temperature. These findings imply that manufacturers should design BEVs with application-appropriate driving ranges and make R&D investments for improving battery performance in cold environments.