Skip to main content
SHARE
Publication

Strengthening of tungsten by coherent rhenium precipitates formed during low fluence irradiation...

by Yury N Osetskiy
Publication Type
Journal
Journal Name
Tungsten
Publication Date
Page Numbers
20 to 27
Volume
4
Issue
1

Experimental data show that the accumulation of rhenium and osmium from transmutation reactions severely affect the microstructural evolution and property degradation of tungsten-based materials under neutron irradiation. Theory and modeling have confirmed that Re atom transport in W is by irradiation-produced migrating self-interstitial atoms. With this diffusion mode in operation, a specific microstructure evolution is realized when at relatively low neutron fluence the Re-rich precipitates are formed, while the void and interstitial loop population development is suppressed, affecting the mechanical properties. This research shows the effect of small coherent Re-rich precipitates on the dislocation glide under stress, investigated using the molecular dynamics approach with empirical interatomic potentials. The results are compared with an earlier simulation of void hardening in W. It is demonstrated that small coherent Re-rich precipitates of less than 6 nm diameter represent relatively weak obstacles for moving edge dislocations. The implication of these results on the interpretation of experimental results is discussed.