Skip to main content
SHARE
Publication

Synergistic effects of a chalkophore, methanobactin, on microbial methylation of mercury...

Publication Type
Journal
Journal Name
Applied and Environmental Microbiology
Publication Date
Volume
TBD
Issue
TBD

Microbial production of the neurotoxin, methylmercury (MeHg), is a significant health and environmental concern as it can bioaccumulate and biomagnify in the food web. A chalkophore or a copper-binding compound, termed methanobactin (MB), has been shown to form strong complexes with mercury [as Hg(II)] and also enables some methanotrophs to degrade MeHg. It is unknown, however, if Hg(II) binding with MB can also impede Hg(II) methylation by other microbes. Contrary to expectations, MB produced by the methanotroph Methylosinus trichosporium OB3b (OB3b-MB) enhanced the rate and efficiency of Hg(II) methylation more than that observed with thiol compounds (such as cysteine) by the mercury-methylating bacteria, D. desulfuricans ND132 and G. sulfurreducens PCA. Compared to no-MB controls, OB3b-MB decreased the rates of Hg(II) sorption and internalization, but increased methylation by 5–7 fold, suggesting that Hg(II) complexation with OB3b-MB facilitated exchange and internal transfer of Hg(II) to the HgcAB proteins required for methylation. Conversely, addition of excess amounts of OB3b-MB or a different form of MB from Methylocystis strain SB2 (SB2-MB) inhibited Hg(II) methylation, likely due to greater binding of Hg(II). Collectively our results underscore complex roles of exogenous metal-scavenging compounds produced by microbes in controlling net production and bioaccumulation of MeHg in the environment.