Skip to main content
SHARE
Publication

Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering...

Publication Type
Journal
Journal Name
The Journal of Chemical Physics
Publication Date
Page Number
174509
Volume
132
Issue
17

Theoretical calculations based on integral equation theory have been carried out to elucidate the real-space correlation function obtained from the novel Spin-Echo Small Angle Neutron Scattering (SESANS) technique. Several potential models are investigated to mimic various interacting colloidal particles. A general discussion regarding the profiles of the real-space SESANS correlation functions corresponding to different model systems is presented. In the conventional elastic scattering tools, the spectral signature to differentiate attractive and repulsive molecular forces is found at small angels, which may impose technical difficulties to exact such information. Whereas, in SESANS, the characteristic feature occurs at the lengthscale near particle size, and is quite sensitive to interaction potentials and their strength. Besides the model monodisperse spherical colloidal systems, our calculation is extended to study the binary hard sphere mixture in which the attractive depletion forces between larger particles, induced by smaller particles, is reflected in the characteristic feature of the SESANS correlation function. Our model studies show that the real-space measurement SESANS presents a powerful probe in discerning intercolloid potential.