Skip to main content
SHARE
Publication

Three-Dimensional Mapping of Microenvironmental Control of Methyl Rotational Barriers...

by William I Hembree, Jerome Y Baudry
Publication Type
Journal
Journal Name
Journal of Physical Chemistry B
Publication Date
Page Numbers
8575 to 8580
Volume
115
Issue
26

Sterical (van der Waals-induced) rotational barriers of methyl groups are investigated theoretically, using ab initio and empirical force field calculations, for various three-dimensional microenvironmental conditions around the methyl group rotator of a model neopentane molecule. The destabilization (reducing methyl rotational barriers) or stabilization (increasing methyl rotational barriers) of the staggered conformation of the methyl rotator depends on a combination of microenvironmental contributions from (i) the number of atoms around the rotator, (ii) the distance between the rotator and the microenvironmental atoms, and (iii) the dihedral angle between the stator, rotator, and molecular environment around the rotator. These geometrical criteria combine their respective effects in a linearly additive fashion, with no apparent cooperative effects, and their combination in space around a rotator may increase, decrease, or leave the rotator’s rotational barrier unmodified. This is exemplified in a geometrical analysis of the alanine dipeptide crystal where microenvironmental effects on methyl rotators’ barrier of rotation fit the geometrical mapping described in the neopentane model.