Skip to main content
SHARE
Publication

Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals...

by Yixiu Luo, Xiaolong Yang, Tianli Feng, Jingyang Wang, Xiulin Ruan
Publication Type
Journal
Journal Name
Nature Communications
Publication Date
Page Number
2554
Volume
11
Issue
1

Many low-thermal-conductivity (κL) crystals show intriguing temperature (T) dependence of κL: κL ∝ T−1 (crystal-like) at intermediate temperatures whereas weak T-dependence (glass-like) at high temperatures. It has been in debate whether thermal transport can still be described by phonons at the Ioffe-Regel limit. In this work, we propose that most phonons are still well defined for thermal transport, whereas they carry heat via dual channels: normal phonons described by the Boltzmann transport equation theory, and diffuson-like phonons described by the diffusion theory. Three physics-based criteria are incorporated into first-principles calculations to judge mode-by-mode between the two phonon channels. Case studies on La2Zr2O7 and Tl3VSe4 show that normal phonons dominate low temperatures while diffuson-like phonons dominate high temperatures. Our present dual-phonon theory enlightens the physics of hierarchical phonon transport as approaching the Ioffe-Regel limit and provides a numerical method that should be practically applicable to many materials with vibrational hierarchy.