Skip to main content

Functional Materials for Energy

Enhanced ionic conductivity

The concept of functional materials for energy occupies a very prominent position in ORNL’s research and more broadly the scientific research sponsored by DOE’s Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of functionality is seen in advanced membrane materials that save energy by enhancing the efficiency of existing energy-intensive processes or offer entirely new routes for, e.g., separation processes, carbon dioxide capture or environmental remediation. A third type of functionality is seen in energy-responsive materials, which exhibit a chemical, mechanical, structural or electronic response to some form of energy stimulus that can be utilized for, e.g., sensing, actuation or signaling.

ORNL has extensive research programs into functional materials for energy ranging from basic science through to applied programs. Major areas of activity include (i) porous membranes for separation and environmental cleanup; (ii) electrolyte materials for selective ionic transport in batteries; (iii) organic and polymeric materials for electronic and photovoltaic applications; (iv) superconducting materials; (v) ferroelectric materials; (vi) thermoelectric materials and (vii) new low-energy synthetic routes to technologically important materials. A particular area of strength is in the synthesis and processing of new functional forms of carbon: from the amazing variety of nanostructured carbon materials to “foam” carbon insulators to carbon fiber for lightweight structural materials. It also offers capabilities in these research areas to facilitate science of external users from academia or industry through its user facilities in high performance computing, neutron science and nanoscience.