Materials Theory and Simulation

ORNL conducts a broad range of theoretical research in the physical sciences with over 60 staff members and additional students, post-doctoral associates and visitors. This work is tightly integrated with experimental programs and is committed to making effective use of modern theory and advanced computation to progress core science and technology. Efforts include a full range of theory activities, ranging from basic science aimed at providing the fundamental basis for long-term solutions to our energy problems, to near-term work addressing our nation's most pressing energy and security needs. Work is highlighted by:

  • Cross-cutting capabilities/efforts impacting multiple ORNL programs and activities centered on nanoscience, physics, chemistry, materials, and neutron science
  • New theory and computational approaches to establish and enhance links with experiments
  • First principles methods based on density functional theory, quantum chemistry, classical and ab initio molecular dynamics, transport theory, many-body theory, quantum Monte Carlo, field theoretic approaches, phase field analysis, and statistical mechanics
  • Guiding understanding and providing prediction of new materials, architectures and reactions before they are realized in the experimental labs
  • Illuminating connections between experimental observations across diverse characterization techniques
  • Identifying new synthetic pathways

Research Highlights

Quantum critical behavior in a concentrated solid solution: a new twist on structural alloys

Concentrated transition metal alloys with the formula NiCoCrx, with x≈1, and a simple cubic crystal structure, display transport, magnetic and thermodynamic signatures exhibited by more structurally complex compounds near a quantum critical point (QCP). These alloys provide...

Giant Spin-Driven Electric Polarization is Revealed in Promising Multiferroic

Multiferroic materials are important because their electrical and magnetic properties are coupled.  Because BiFeO3 magnetically Comparison between the predicted and observed spin-driven polarization (above) and of the octahedral rotation angle AFD (below) are...

Easy phase transitions spur high piezoelectric responses

Theoretical calculations, based on newly obtained experimental geometries in strained BiFeO3 thin films, predict an almost barrierless Electronic structure theory demonstrates that no barrier exists along the path between co-existing phases in compressively...