

#### **Balancing the SCALE for 30 Years**

Larry L. Wetzel, P. E. Senior Advisory Engineer September 26, 2017

BWXT Nuclear Operations Group, Inc. © 2017 BWX Technologies, Inc. All rights reserved.

# History

- Use of SCALE in the early 1980s
  - KENO-II and KENO-IV was used.
  - Global array, only one array allowed
  - Hansen-Roach 16 group library
  - 123 group library (LEU only)
- Moved to SCALE 4 in 1991
- Testing of SCALE-PC in 1993
- SCALE 4.2 used on HP Workstations in 1995
- SCALE 4.3 used on HP Workstations in 1996
- SCALE 4.4 used on HP Workstations and PCs in 1999
- SCALE 5.0 used on PCs in 2004
- SCALE 6.1 used on PCs in 2014



#### **First Encounter with SCALE**

- SCALE 3 was running on a water-cooled IBM mainframe
- As such, you needed JCL (Job Control Language)
- //LLWHC002 JOB (000420-LLW-P-050, BX17),WETZEL,MSGCLASS=X,CLASS=Z,
  // MSGLEVEL=1
  //\* DOD 99/99/99
  //F1 OUTPUT CLASS=\*,DEST=R6,JESDS=ALL
  //COMP EXEC FORTQC
  //FORT.SYSIN DD DSN=SCALE3.SOURCE(XSDOSE),DISP=SHR
  //XSDOSE EXEC SCAKEN5,GOSIZE=1920K,TME=48,OUT='\*.F1'
  //GO.SYSIN DD \*
  =NITAWAL
  0\$\$ 85 E 1\$\$ A2 6 E 1T



# SCALE 3.0

- No direct connection to the IBM
- Used a modem to transmit
- Intermediate person submitted runs
- Next day, process was reversed for outputs
- KENO-V.a was the primary code but KENO-IV was used
- Hansen-Roach 16 Group Stand Alone Cross Sections
- Sigma-p calculations required



#### SCALE

In 1990, built a model of Uranium Recovery





#### SCALE

- Took forever to run (12 hours for a dry condition)
- Why?





## SCALE 3.0

- Spent a week working with Nancy Landers and Lester Petrie
- Learned how the code works
- Model had a single cuboid with several hundred holes for equipment and process columns



#### **How The Code Works**

Crossing of boundaries for a unit with holes.

Neutron crossed a boundary, so what region is it in?

Need to check every hole in the unit.



29 Holes

1 hole



#### SCALE 3.0

- 1993 PC KENO was in development
  - Jezebel with 103 generation and 300 neutrons per generation
  - 12 MHz PC
  - 20 minutes to complete



#### Monte Carlo Calculaton of k<sub>eff</sub>





#### **Simple Monte Carlo**

#### **First Generation**





#### Simple Monte Carlo





# Calculate k<sub>eff</sub>

- k<sub>eff</sub> = <u># of Fission Locations (generation N)</u>
  # of Fission Locations (generation N-1)
- Average k<sub>eff</sub> over (N skipped) generations
- What about a system with two fissile components????



#### **Two Fissile Components**





#### **Test Case**





#### **Results**

| Gen.<br>Skipped                                    | k <sub>eff</sub> | Sphere 1<br>(3.8g/cc)<br>Fission Den | Sphere 2<br>(0.0019 g/cc)<br>Fission Den | Sphere 3<br>(15.2 g/cc)<br>Fission Den |
|----------------------------------------------------|------------------|--------------------------------------|------------------------------------------|----------------------------------------|
| Equal Number Started in Each Sphere (START TYPE 6) |                  |                                      |                                          |                                        |
| 1                                                  | 0.665            | 1.34E-06                             | 0                                        | 7.33E-04                               |
| 10                                                 | 0.665            | 0                                    | 0                                        | 7.35E-04                               |
| All Started in Sphere 1                            |                  |                                      |                                          |                                        |
| 1                                                  | 0.390            | 4.31E-04                             | 0                                        | 0                                      |
| 10                                                 | 0.390            | 4.31E-04                             | 0                                        | 0                                      |
| 100                                                | 0.391            | 4.35E-04                             | 0                                        | 0                                      |
| All Started in Sphere 2                            |                  |                                      |                                          |                                        |
| 1                                                  | 0.0118           | 0                                    | 1.31E-05                                 | 0                                      |
| 10                                                 | 0.0117           | 0                                    | 1.31E-05                                 | 0                                      |
| All Started in Sphere 3                            |                  |                                      |                                          |                                        |
| 1                                                  | 0.663            | 0                                    | 0                                        | 7.34E-04                               |
| 10                                                 | 0.664            | 0                                    | 0                                        | 7.34E-04                               |
| BWXT Nuclear Operations Group, Inc.                |                  |                                      |                                          |                                        |

### **Current Applications**

#### CSAS5 is our workhorse

- V7-238 group cross sections
- Run on individual PCs
- CSAS6 is available but rarely used
  - Slower running, but has geometry capabilities that are unique

#### TSUNAMI

- Limited use at the moment
- Would like to utilize capability in the future



### **Current Applications**

- MAVRIC
- Criticality Accident Alarm System (CAAS) detector placement
  - Coupled neutron-gamma library
  - Multiple utilities routines needed
  - Paradigm shift, what is conservative



#### **CAAS Placement**





.19

#### **CAAS Placement**





#### **CAAS** Maps





#### **Takeaways**

- SCALE has many more capabilities than one person needs
- Understand the physics and how the code represents the physics
- Understand how the code operates



# Questions

