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Motivation

 Random number generators are critical to vast
number of important applications: HPC, national
security, health data security, the grid security,
and consumer authentication products.

* Current pseudorandom number generators
(PRNG) have shortcomings:

— Inaccuracies arise from intrinsic periodicity (bias)
— Multifactor authentication: 2011 RSA hack

« 2015 OPM clearance hack preventable with stronger randomness
In authentication protocols

— Encryption: PRNG cited as one of the most vulnerable
parts of the cryptography chain
« The Dual_EC_DRBG random number generator used by RSA
included a back door that rendered SSL as clear text.
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State of the art

TRNGs are based on quantum superposition of
photons on a beam splitter. The beam splitter
samples the photon position distribution like a 50/50
coin toss, but suffer from shortcomings.

* Expensive (>$1.5-20Kk)
* Low bandwidth (4Mbps)

* Periodicity (bias) still possible in depending on
Implementation
— Mathematical extractors must be used to extract randomness
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ORNL QRNGs

Use quantum random number generators
» Such as arrival time distribution of photons

Random numbers are derived from quantum
physics, not deterministic events or calculations
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ORNL QRNGs

Use quantum random number generators
» Such as arrival time distribution of photons

Random numbers are derived from quantum
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ORNL QRNGs

* Low noise high current
%%urce supplies current to g

» Modulation input allows J
current pulse shaping |

* Cooling to 18 C by heat
sinking diode mount to
Peltier, temperature lock
loop

* Diode is off the shelf

component Y |

« Diode mount, heat sink, oo T 4
connectors, optics Example custom built TA
custom built
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ORNL QRNGs

 Measure shot noise of vacuum field
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Two factor authentication application
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Two factor authentication application
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Two factor authentication application

3. All combined parts work
together to make a novel, much
more secure 2FA system based
on QRNGs and advanced key
management/hashing techniques
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Two factor authentication application

Improved hashing and key management:
« Random seeds expire over time

time

- Force move to a new seed via button press =
seed
S, S, S, ...
Ty |Hi(Sy) H1(S,) H,(Ss)
Ty [ Ha(Hy(S) H,(H1(Sy)) H,(H1(S3))
Tz [Ha(Hy(Hi(Sy))  [Ha(Ha(Hi(Sp)) | Ha(Hy(Hy(S5)))

 Store seeds securely in protected memory
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Technology Description

Why is the output random?

* The noise of the quantum vacuum field is random. Even in the
absence of light (n=0), the electromagnetic field fluctuates; H =

hv(n + %)

- We amplify these fluctuations with via interference with a local
oscillator on a beam splitter

« The split diode accomplishes this task as an integrated beam splitter
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Technology Description

Why is the output random? (cont.)

Coherent state phase space

a — Amplitude

X



Technology Description

Why is the output random? (cont.)
Heisenberg’s uncertainty principle: AX AP = 1h/2

Coherent state phase space

a — Amplitude

X



Technology Description

Why is the output random? (cont.)
Heisenberg’s uncertainty principle: AX AP = 1h/2

Coherent state phase space
Uncertainty ellipse: AX AP = h/2

a — Amplitude

X



Technology Description

Why is the output random? (cont.)
Heisenberg’s uncertainty principle: AX AP = 1h/2

Coherent state phase space
Uncertainty ellipse: AX AP = h/2

a — Amplitude

X

A measurement of X or P (or a) cannot be absolutely precise. The result is
random within the limits of the HUP! To generate random numbers, access this
source of quantum noise




Technology Description: bias
detection
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Technology Description: Previous bias
removal implementation

Reconfigurable micromirror
array Spllts beam c00 1D L-R Filter Post-extractor Histogram

detector

400
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8-bit bins

. mirror Binned difference data leads
beam position to random numbers with
automatic bias removal
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Technology Description
* How would we distribute keys?

« Random number generation and sharing at the point of
manufacture. Both devices are separated and share
encryption or authentication keys in the field. The table
shows example random number lists, in contrast to the
pseudorandom seed/hash methods.
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Technology Description

Quantum Random
Number generator
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Technology Description

Our TRNG leverages advances in photodetection and
guantum state stabilization to achieve at least 3 orders
of magnitude higher bitrates, lower bias, and 15x lower
cost than previously possible

« Beam splitter interaction
Integrated into diode

« Controller analyzes beam
position on diode and
adjusts balance to remove
bias in situ

microcontroller

« Off the shelf components +/- 12V input
allow for more economical,
highly integrated, and
faster detector USB interface
LED and split ~ Voltage controlled  Difference
diode  attenuators amplifier %9&?3?5{&



Research and Development Goals

« Reduce TRNG footprint while increasing
detection bandwidth

* Integrate LED onto detector board while
minimizing excess noise, implementing a
homodyne detector;

* Integrate bias correction algorithm

* Verify output of microcontroller with NIST and
DIEHARD randomness tests

» Key challenges: detector and LED must be shot
noise limited across a large bandwidth; bias
detection algorithm must work at high
bandwidth to obtain representative sample;
attenuators must have sufficient range
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Quantum vacuum noise measurements

Broadband photon shot noise observed for a variety of LEDs
across visible spectrum. Reduced gain in the final circuit will
Increase the bandwidth by at least two orders of magnitude.

660 nm Hamamatsu LED

Frequency (MHz)
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Quantum vacuum noise measurements

405 nm Roithner
LaserTechnik LED
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Quantum vacuum noise measurements

* Linear noise dependence on optical power => white

noise
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Data Acquisition Performance

--Each step of the ADC is ~25 uV
60x10° |
--The spread for the ADC result given
Loopback Test a fixed DAC value is +/- 6.25 mV.
50 --Nonlinear near 0 V.
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Raw Quantum Digitized
Noise Digitize Noise

16-bit output

voltage
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Randomness Extractors take in n bits, consume n-m bits,
and produce m bits with enhanced randomness.

Toeplitz matrix bits bits
[ tm  tm+1 0 tmtn—2  tmin—i \ d ([ r
tm—1 tm v bmgn-3 tmin—2 da ra
t) fi T tn 1 dp—1 Tm—1
\ to ce th—1 tn ) d,, \ "m |/

...traditional serial computation can only achieve =1 Mbps.

Using parallel operations an FPGA can achieve >1 Gbps.
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Our ADC Is 16-bit operating at 100 Mhz.

The Toeplitz extraction reduces n=1560 raw bits
to m=1024 extracted bits.

The maximum bitrate possible is 1.05 Gbps.
We have achieved 1 Gbps.

16 bit values from test and lab sources before and
after extraction:

1000 m Raw ADC Voltage Measurements 80 @ Raw ADC Voltage Measurements
m Extracted Random Values m Extracted Random Values
M Raw Min-entropy = 0.47 50 — @ Raw Min-entropy = 0.71
100 m Extracted Min-entropy = 0.87 m Extracted Min-entropy = 0.86

0 10 20 30 40 5 goxio® 0 10 20 30 40 50 gox10®
16 bit value 16 bit value
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Conclusions

Low cost LEDs can be shot noise limited
with cheap power supplies and minimal
conditioning

Low cost transimpedance amplifier can
amplify quantum vacuum fluctuations

Shot noise is a barometer for bias

Can be used to control bias:
Variable voltage attenuators
Variable digital potentiometer
Spatially dependent beam differencing
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