Accuracy and Runtime Improvements with SCALE 6.2

Presented to: SCALE Users' Group Workshop September 26, 2017

Benjamin R. Betzler Matthew A. Jessee (presenter) William J. Marshall Ugur Mertyurek Brad Rearden Mark L. Williams

National Laboratory

ORNL is managed by UT-Battelle for the US Department of Energy

Nuclear Data from ORNL AMPX Tools

Cross Section Data

- New CE cross-section data for neutron interactions, gamma yield, and gamma interactions
- ENDF/B-VII.1 nuclear data
- New MG neutron libraries
 - 252-group energy structure
 - 56-group energy structure
 - Intermediate resonance parameters
- Extensive test suite
 - 411 VALID benchmarks
 - 7000 transmission tests
 - 5000 infinite medium tests
- New binary format replacing 40+ year-old AMPX format

AMPX now included with SCALE distribution so users can create their own libraries!

Validation with critical benchmarks for many types of systems – VALID suite

• 411 configurations from International Criticality Safety Benchmark Evaluation Project (ICSBEP)

5

Sequence / Geometry	Experiment class	ICSBEP case numbers	Number of configurations					
	HEU-MET-FAST	15, 16, 17, 18, 19, 20, 21, 25, 30, 38, 40, 65	18	—• Fissile materials High-enriched uranium (HEU),				
	HEU-SOL-THERM	1, 13, 14, 16, 28, 29, 30	Intermediate-enriched uranium (IEU)					
	IEU-MET-FAST	2, 3, 4, 5, 6, 7, 8, 9	3.9 8					
	LEU-COMP-THERM	1, 2, 8, 10, 17, 42, 50, 78, 80	140	Mixed uranium/plutonium oxides				
CSAS5 /	LEU-SOL-THERM	2, 3, 4	19	(MOX)				
KENO V.a	MIX-MET-FAST	5, 6	Fuel form					
	MIX-COMP-THERM	1, 2, 4	21	Metal (MET),				
	MIX-SOL-THERM	2	3	Multi-material composition (e.g. fuel				
	PU-MET-FAST	1, 2, 5, 6, 8, 10, 18, 22, 23, 24	10	pins – COMP)				
	PU-SOL-THERM	1, 2, 3, 4, 5, 6, 7, 11, 20	81	Neutron spectra				
	HEU-MET-FAST	5, 8, 9, 10, 11, 13, 24, 80, 86, 92, 93	27	Fast				
USAS6/	IEU-MET-FAST	19	2					
KENO-VI	MIX-COMP-THERM	8	28	National Laboratory				

Comparison SCALE 6.1 - 6.2 results for VALID benchmarks

SCALE 6.1 Resonance Self-Shielding (somewhat simplified view)

SCALE 6.2 Resonance Self-Shielding

XSProc features

- XSProc provides capabilities for
 - resonance self-shielding of microscopic data,
 - macroscopic cross sections for mixtures,
 - one-dimension MG transport calculations to calculate eigenvalues and fluxweighting functions,
 - group collapsing of cross sections using flux spectra from the onedimensional eigenvalue calculation or user input fixed source spectra, and
 - spatial homogenization of cross sections across material zones.
- Supported unit cell types
 - repeated lattices without need for Wigner-Seitz approximation
 - double-heterogeniety for HTGR, FHR, and FCM analysis
 - arbitrary slab, cylindrical, or spherical geometry
- Modern C++ architecture with API

TRITON Runtimes for 1470 ORIGEN Reactor Libraries

XXXXXX					
Assem	bly type (Libraries)	Lattice types			
	Babcock & Wilcox	15×15			
	Westinghouse	14×14, 15×15, 17×17, 17×17-OFA			
PWR	Combustion	14.44 16.46			
	Engineering	14×14, 16×16			
	Siemens	14×14, 18×18			
$\langle \rangle \rangle$	ABB	8×8-1			
Assembly to Bab We PWR Cor Eng Sier ABB Atri Ger SVE BWR BW PW ADD PW PW PW ADD PW ADD PW	Atrium	9×9-9, 10×10-9			
BWR	Concern L El contrais	8×8-4, 9×9-7, 7×7-0, 8×8-1, 8×8-2, 9×9-			
	General Electric	2, 10×10-8			
	SVEA	64(8×8-1), 96(10×10-4), 100(10×10-0)			
	BWR Lattices	8×8-2, 9×9-1, 9×9-9, 10×10-9			
	PWR Lattices	14×14, 15×15, 16×16, 17×17, 18×18			
		ABB 8×8-1, Atrium 9×9-9, 10×10-9; GE			
	BWR Lattices (×75)	7×7-0, 8×8-1, 8×8-2, 9×9-2, 10×10-8;			
MOY		SVEA-64, 96, 100			
NOA		Siemens 14×14, 18×18; CE 14×14,			
		16×16;			
	PWR Lattices (×15)	B&W 15×15;			
		Westinghouse 14×14, 15×15, 17×17,			
		17×17-OFA			
	AGR (×6)				
	CANDU (×1)	19-pin, 28-pin, 37-pin			
	Magnox (×4)				
Other	RBMK (×24)				
	VVER-440 (×3)	flat, radial enrichments (3.82, 4.25,			
		4.38)			
	VVER-1000 (×7)	flat enrichment			

SCALE 6.2 Depletion with Continuous-Energy KENO

		MG	CE
	²³⁴ U	4.03	3.37
	²³⁵ U	5.34	5.04
	²³⁶ U	1.82	1.65
	²³⁸ U	-0.15	-0.15
ſ	²³⁸ Pu	-10.38	-10.15
	²³⁹ Pu	7.05	5.70
	²⁴⁰ Pu	3.15	2.82
	²⁴¹ Pu	0.72	-0.05
	²⁴² Pu	-7.40	-6.91
	²³⁷ Np	2.33	2.39
	²⁴¹ Am	-6.56	-7.35
	¹³³ Cs	0.67	0.53
	¹³⁵ Cs	4.42	4.32
	¹³⁷ Cs	-2.76	-2.76
	¹⁴³ Nd	2.09	1.98
	¹⁴⁴ Nd	-3.22	-3.15
	¹⁴⁵ Nd	-3.01	-3.09
	¹⁴⁶ Nd	0.18	0.29
	¹⁴⁷ Nd	-0.03	-0.01
	¹⁵⁰ Nd	2.58	2.60

C/E -1 (%) for Spent Fuel Assay Data for a PWR Assembly

KENO Improvements

- Substantial reduction in memory requirements over 99% improvement in many cases
- Accuracy improvements through comprehensive review and testing
- Parallel Computations
 - Significant speedups with MPI on Linux clusters
- Problem-Dependent Doppler broadening for CE calculations for thermal, resolved, and unresolved energy ranges
- Resonance upscatter treatment
 - Significant improvement in elevated temperature CE Monte Carlo
- Source Convergence
 - Sourcerer Hybrid sequence that uses coarse deterministic solution to accelerate fission source convergence
 - Shannon Entropy diagnostics

Polaris: Fast 2D lattice physics

Simple Input

- Assembly geometry
- Material definitions
- Range of system conditions

Output

- Lattice physics parameters (.t16 file)
- GENPMAXS converts .t16 file to .PMAX file
- Spent Fuel Isotopics file (.f71 file)

Goals

- Fast: < 1 CPU minute per statepoint
- Simple Input: 100 200 lines
- Target accuracy compared to Monte Carlo:
 - 200 pcm dk
 - BWR: 1% RMS, 1.5% Max pin fission rate error
 - PWR: 0.5% RMS, 1.0% Max pin fission rate error
- Good agreement with radiochemical assay data

Pin power prediction

17×17 PWR lattice pin fission rate differences at nominal conditions for TRITON and Polaris

N/A		NE	WT							
0.08% 0.07%	-0.07% -0.09%		a115							
0.09% 0.08%	-0.05% -0.07%	-0.13% -0.16%								
N/A	-0.06% -0.07%	0.01% -0.02%	N/A						_	
-0.01% -0.04%	0.04% 0.01%	0.00% -0.04%	0.05% 0.01%	0.19% 0.11%				RMS		0.09 % 0.07 % 0.23 %
0.17% 0.16%	-0.09% -0.11%	-0.04% -0.06%	0.09% 0.07%	0.13% 0.04%	N/A				0).19 %
N/A	0.16% 0.13%	0.23% 0.19%	N/A	0.10% 0.03%	0.12% 0.07%	0.01% 0.03%				
-0.01% -0.01%	-0.07% -0.08%	0.00% 0.00%	0.06% 0.04%	0.06% 0.05%	0.03% 0.07%	-0.0 0.0	-0.06% -0.16 0.00% -0.13		% %	
0.0704	0.10%	.0.03%	-0.10%	-0.04%	-0.12%	-0.13% -0.05%		-0.12	%	-0.20

10×10 BWR lattice dominant zone pin power differences at 40% void fraction for TRITON and Polaris

0.84% 0.84% 0.90% 0.67%	0.30% 0.45%								
0.64% 0.11%	-0.05% 0.18%	-0.13% -0.07%							
0.51% -0.10%	-0.02% 0.00%	-0.49% -0.09%	-0.13% -0.10%				000		
0.45% -0.36%	-0.31% -0.16%	-0.14% -0.16%	-0.35% 0.05%	0.04% 0.17%			RM	s 0.	50 % 23 %
0.30% -0.30%	-0.08% -0.08%	-0.40% -0.14%			-0.01% 0.32%		ma	x 0.	90 % 84 %
0.37% -0.32%	-0.23% -0.08%	-0.08% -0.10%			-0.03% 0.19%	-0.44% 0.04%			
0.21% -0.18%	-0.02% -0.03%	-0.59% -0.31%	-0.19% 0.00%	-0.37% -0.09%	-0.36% -0.08%	-0.20% -0.16%	-0.60% -0.23%		
0.87% 0.52%	0.01% 0.24%	-0.12% -0.09%	-0.43% -0.17%	-0.22% -0.10%	-0.14% -0.13%	-0.43% -0.13%	-0.05% -0.03%	-0.26% 0.07%	
0.78% 0.76%	0.35% 0.15%	0.06% -0.02%	0.08% -0.01%	-0.12% -0.18%	-0.19% -0.22%	-0.23% -0.31%	0.03% 0.05%	0.19% 0.18%	0.52%

orator

14

Eigenvalue prediction for PWR fuel depletion

Conclusions

- SCALE 6.2 provides many improvements in accuracy and runtime, especially for reactor physics calculations.
- CE Monte Carlo biases for MOX or burned-fuel calculations have been minimized with numerous revisions to the CE data and physics implementation in the codes.
- Monte Carlo innovations enable CE depletion with parallel Monte Carlo and integrated problem-dependent Doppler broadening.
- Historical biases in MG LWR calculations have reduced to approximately 100 pcm through many improvements in the nuclear data, group structures, and resonance self-shielding techniques.
- Runtimes for lattice physics calculations are greatly improved with the availability of the new Polaris tool as well as numerous enhancements in XSProc and NEWT as applied in TRITON.
- Custom nuclear data libraries can now be created with the inclusion of AMPX.

