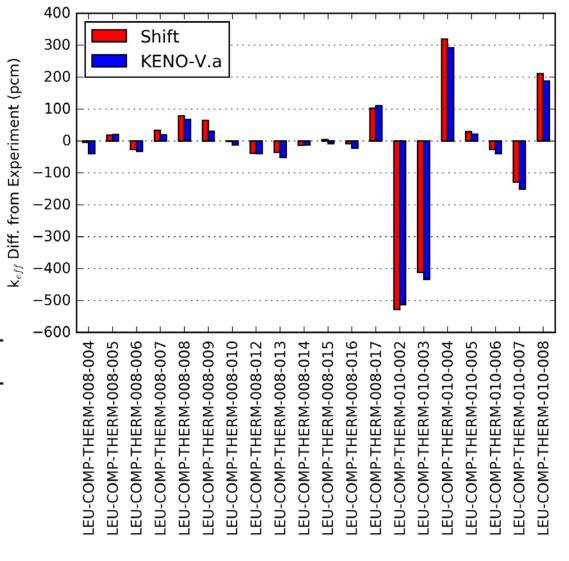


TRITON/Shift Depletion Validation and other Enhancements 2018 SCALE Users' Group

B. Ade K. Bekar G. Davidson S. Johnson R. Lefebvre B. Langley

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Project Goals


- Integrate Shift as a Monte Carlo transport method in 3D TRITON
- Enable *fast and accurate* Monte Carlo depletion solutions using highperformance modern parallelization
- Nodal data generation capabilities (covered in separate presentation)
- Motivations
 - Before this work
 - TRITON had general 3D transport (KENO) + depletion (ORIGEN), but required significant CPU time and yielded poor parallelization
 - No isotopic validation for TRITON/Shift
 - No ability to generate nodal data (T16) along with depletion
 - After this work: reference depletion solutions and preliminary validation basis

Verification Testing: VALID Test Suite

- Shift implemented into CSAS as well as TRITON, enabling criticality safety and depletion methods
- VALID is a suite of criticality safety benchmarks
- New VALID results correspond well with KENO-V.a and KENO-VI, as well as previously generated results using legacy CSAS/Shift
- VALID calculations were run on a single processor, so computational time comparison between KENO and Shift is similar

Experiment type	Number of cases	Difference from KENO ^a (pcm)	Standard deviation ^b (pcm)
LEU-COMP-THERM	128	21	31
IEU-MET-FAST	11	16	160
PU-MET-FAST	10	-23	27
MIX-SOL-THERM	3	23	21
MIX-COMP-FAST	2	506	19
MIX-COMP-THERM	20	18	17
HEU-MET-FAST	22	-14	18
PU-SOL-THERM	81	6	20

^a Computed as the average over all KENO and Shift simulations for an experiment set.

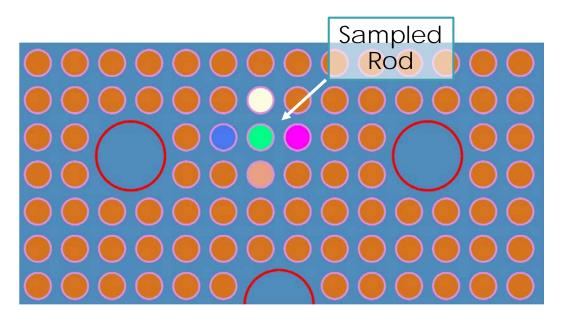
^b Computed as the standard deviation of the difference in k_{eff} between Shift and KENO.

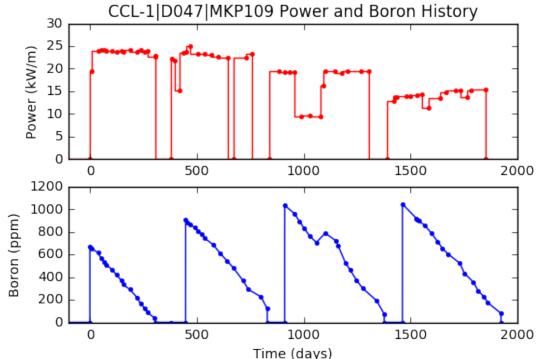
National Laboratory

Depletion Validation Engine

- Automatically searches a directory for KENO- or NEWT-based geometry, and then sets up new cases with modified high-level options specified by the users

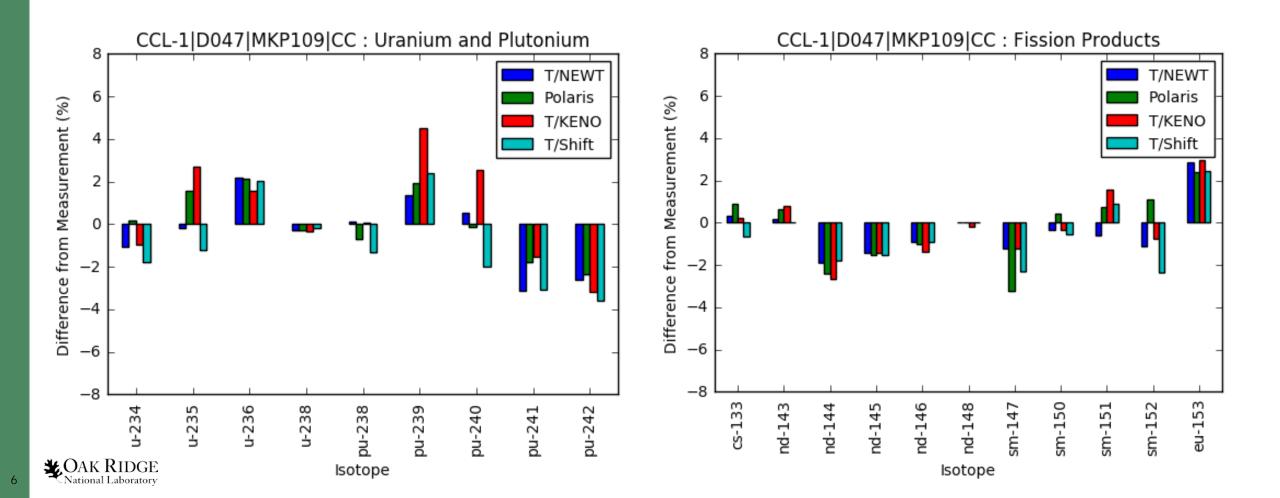
 I from pyvalid import *
 - First-level options: cross section library, addnux set, major XS processing options
 - Second-level options: transport solver options (CMFD, convergence criteria, angular quadrature, numbers of particles/cycles, etc.)
 - Third-level options (not yet available): NEWT grid spacing, multigroup XS processing options, material modifications


```
validdir = '/path/to/VALID/inputs/'
   rundir = './validtest s63b1'
   s63b1 = pyvaliddepl()
   s63b1.readvalid(validloc=validdir)
   s63b1.makeNew(rundir, simtype= ('crit', 'keno5'),
9
                          seqlibs=[('shift5','v7-252'),
10 -
                                    ('shift5','ce_v7.1')
                                    ('keno5', 'v7-252')
                                    ('keno5', 'ce v7.1')],
13 ∟
                        gparmopts=['centrm'],
14
                         parmopts=['npg=10000', 'gen=1100', 'nsk=100'])
15
   s63b1.runFiles(runtype='all')
```

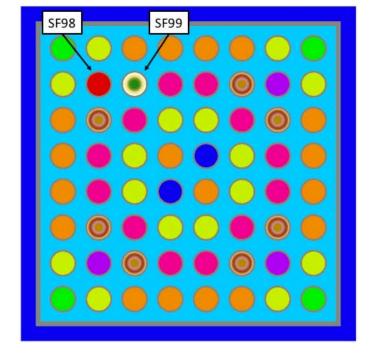

 Post-processing capabilities read ft71f001 file, performs decay, and compares directory to SFCOMPO data (http://www.oecdnea.org/sfcompo/)

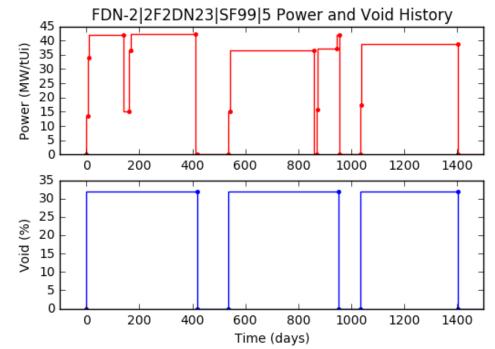
Depletion Validation Cases: Calvert Cliffs Unit 1

- CE 14x14 assembly design
- Enrichment: 3.038 wt % ²³⁵U
- Axial location
 Sample P: 270.3 mm
 Sample CC: 1637.1 mm
- Sample Burnup Sample P: 37.12 GWd/MTHM Sample CC: 44.34 GWd/MTHM



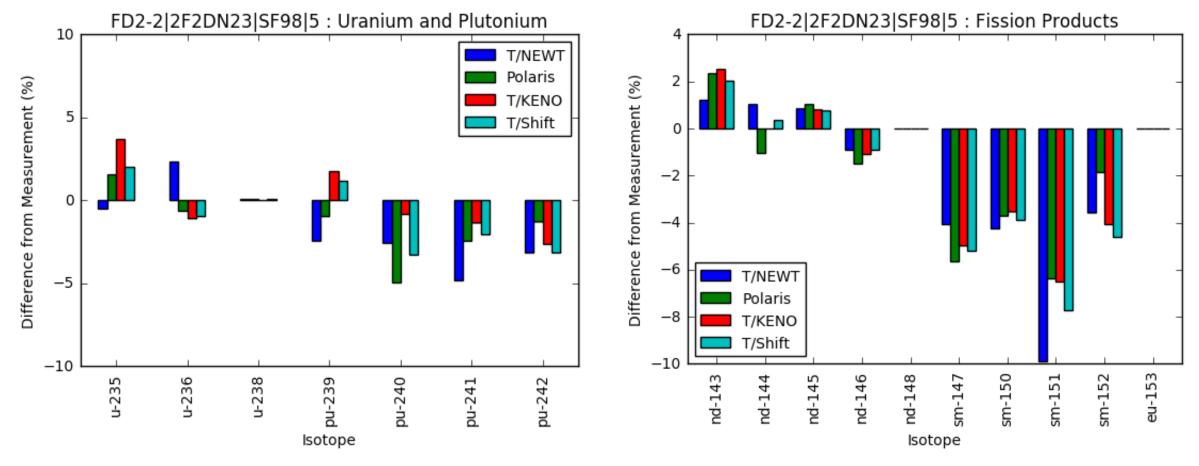
Depletion Validation Cases: Calvert Cliffs Unit 1 (PWR)


	RMSE (%)		
Code	Uranium	Plutonium	Fission Prod.
T/NEWT	1.2	1.9	15.8
Polaris	1.3	1.6	15.4
T/KENO	1.7	2.8	15.5
T/Shift	1.5	2.6	16.6



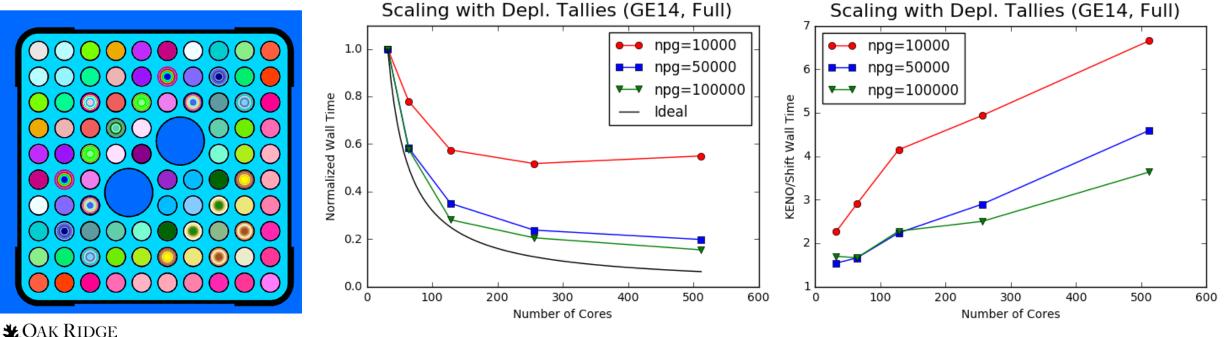
Depletion Validation Cases: Fukushima Daini Unit 2

- GE 8×8-2 assembly (two small central water rods)
- Enrichment: 3.91 wt % ²³⁵U in measured pin, but variable through the assembly
- Axial location
 Sample SF98-5: 1214 mm
 Sample SF98-6: 2050 mm
- Sample Burnup Sample SF98-5: Sample SF98-5:


43.99 GWd/MTU 39.92 GWd/MTU

Depletion Validation Cases: Fukushima Daini Unit 2

	RMSE (%)		
Code	Uranium	Plutonium	Fission Prod.
T/NEWT	1.4	5.5	6.8
Polaris	1.0	4.8	5.7
T/KENO	2.2	5.3	6.2
T/Shift	1.3	5.8	6.5



CAK RIDGE National Laboratory

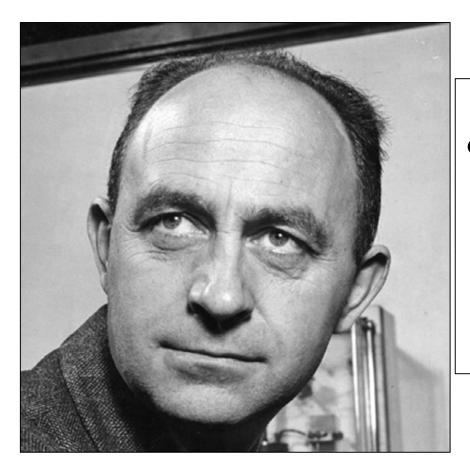
8

Shift Depletion Scaling

- Test Case: GE14 fuel assembly with depletion tallies
 - A number of identical simulations were run and the average time over the set simulations was
 used to estimate CPU time
- Shift scales close to ideally up to hundreds of processors when using O(50k) particles per generation
- Shift is only slightly faster than KENO on a single node (1.5x 2x), but much faster on many nodes (3x - 7x)

National Laboratory

Stochastic Geometry


- Goal: Enable more straightforward generation of reference solutions for stochastic geometry (TRISO, pebble bed, FCM, etc.)
- Current capabilities
 - Multiple particle types and sizes (spherical only)
 - Sphere, cylinder, and cuboid boundaries
 - Random or regular array placement
 - Visualization of geometry enabled in Fulcrum
- Implemented only in Shiftbased sequences

CAK RIDGE

Pebble Input Example

	1	=csas-shift
	2	•••
	3	unit 1
	4	sphere 1 2.500000e-02
	5	sphere 2 3.400000e-02
	6	sphere 3 3.800000e-02
	7	sphere 4 4.150000e-02
	8	sphere 5 4.550000e-02
	9	media 100 1 1
	10	media 101 1 2 -1
	11	media 102 1 3 -2
	12	media 103 1 4 -3
	13	media 104 1 5 -4
	14	boundary 5
	15	unit 10
	16	com='pebble'
	17	sphere 1 2.500000e+00
	18	sphere 2 3.000000e+00
	19	<pre>media 101 1 1 randommix='trisos'</pre>
	20	media 106 1 2 -1
	21	boundary 2
	22	•••
	23	end geometry
	24	•••
)	25	read randomg eom
	26	randommix = 'trisos'
	27	type= random
	28	units= 1 end
	29	pfs= 0.10 end
5	30	clip= no
	31	seed= 1000
	32	end randommix
	33	end randomgeom
	34	•••
	35	end

Questions?

"Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level."

-Enrico Fermi

11