

A New SCALE Capability for Uncertainty Quantification of Kinetic Parameters

^a Majdi I. Radaideh, ^b William A. Wieselquist, ^a Tomasz Kozlowski, ^b Matthew Jessee
 ^a University of Illinois at Urbana Champaign, 104 South Wright Street, Urbana, IL 61801
 ^b Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831

Presented by: Majdi I. Radaideh (PhD Candidate at UIUC) SCALE Users' Group Workshop August 27-29, 2018

• Background

- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling (ROM)
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

- Delayed neutrons are important for reactor control as they make the nuclear reactor controllable.
- Importance of kinetic parameters' uncertainty to the reactor modeling.
- The conventional kinetics model is to divide the delayed neutron precursors into six groups (i.e. N=6).
- For core calculations, homogenized kinetic parameters $(\beta_{eff}, \beta_i, \lambda_i, \lambda_{eff})$ averaged over all isotopes are needed along with their uncertainty.
- At the end, you provide a single value of each kinetic parameter (e.g. β_{eff}) which represents the average of all delayed neutron emitters.
- The sources of uncertainty:
- 1. Fundamental Nuclear Data: XS (e.g., ν , Σ_f , χ)
- 2. Fundamental Delayed Neutron Data: DND (e.g. $a_{j,i}$, $\lambda_{j,i}$)

$$\frac{dn(t)}{dt} = \frac{\rho - \beta_{eff}}{\Lambda} n(t) + \sum_{i=1}^{N} \lambda_i C_i(t)$$
$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t), \qquad (i = 1, ..., N)$$

Response of Interest (Homogenized Kinetic Parameters):

$$\beta_{j,i} = a_{j,i}Y_j$$

$$\beta_i = \frac{\sum_j \beta_{j,i} \sum_m \sum_g \bar{\nu} \sum_f^{j,m,g} \varphi_{m,g} V_m \sum_{g'} \chi_d^{g',i} \varphi_{g'}^*}{\sum_j \sum_m \sum_g \bar{\nu} \sum_f^{j,m,g} \varphi_{m,g} V_m \sum_{g'} \chi^{g'} \varphi_{g'}^*}$$

$$\lambda_i = \frac{\sum_j \lambda_{j,i} \beta_{j,i} \sum_m \sum_g \bar{\nu} \sum_f^{j,m,g} \varphi_{m,g} V_m}{\beta_i \sum_j \sum_m \sum_g \bar{\nu} \sum_f^{j,m,g} \varphi_{m,g} V_m}$$

$$\beta_{eff} = \sum_{i=1}^N \beta_i \qquad \lambda_{eff} = \frac{\beta_{eff}}{\sum_{i=1}^N \frac{\beta_i}{\lambda_i}}$$

• Background

- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

SCALE/Sampler with DND

M. I. Radaideh, W. Wieselquist, T. Kozlowski, M. Jessee (2018)

Delayed Neutron Data

			Table 1	: Measured delayed	neutron group param	ameters for the isotopes whose both thermal and fast sets $a_{i,i} (\mathbf{T}^a) \qquad \lambda_{i,i} (\mathbf{T}) \qquad \text{Source}$		
•	Fundamental delayed	Isotope	No.	$a_{i,j}$ (F ^a)	$\lambda_{i,j}$ (F)	$a_{i,j}$ (T ^a)	$\lambda_{i,j}$ (T)	Source
	neutron parameters:	U-233	1	0.086 ± 0.004	0.0126 ± 0.0006	0.086 ± 0.003	0.0126 ± 0.0001	F: Tuttle (1975)
	$a_{i,i}, \lambda_{i,i}, Y_{i}$		2	0.274 ± 0.007	0.0334 ± 0.0021	0.299 ± 0.004	0.0337 ± 0.0006	T: Keepin et al. (1957)
			3	0.227 ± 0.052	0.1310 ± 0.0070	0.252 ± 0.040	0.1386 ± 0.0058	
•	The notation for delayed		4	0.317 ± 0.016	0.3020 ± 0.0360	0.278 ± 0.020	0.3254 ± 0.0306	
	noutron data		5	0.073 ± 0.021	1.2700 ± 0.3900	0.051 ± 0.024	1.1271 ± 0.4435	
	neutron data		6	0.023 ± 0.010	3.1300 ± 1.0000	0.034 ± 0.014	2.5023 ± 0.4246	
	$X_{i,\alpha}^{Isotope}$	U-235	1	0.038 ± 0.004	0.0127 ± 0.0003	0.033 ± 0.003	0.0124 ± 0.0003	F: Tuttle (1975)
	ι,g		2	0.213 ± 0.007	0.0317 ± 0.0012	0.219 ± 0.009	0.0305 ± 0.0010	T: Keepin et al. (1957)
	Wheney		3	0.188 ± 0.024	0.1150 ± 0.0040	0.196 ± 0.022	0.1114 ± 0.0041	
	where:		4	0.407 ± 0.010	0.3110 ± 0.0120	0.395 ± 0.011	0.3014 ± 0.0118	
	$X = a, \lambda, Y$ (Parameter)		5	0.128 ± 0.012	1.4000 ± 0.1200	0.115 ± 0.009	1.1363 ± 0.1546	
	Isotope: U235, U238, etc.		6	0.026 ± 0.004	3.8700 ± 0.5500	0.042 ± 0.008	3.0137 ± 0.3276	
	i = 1, 2,, 6 (Precursor group)	Pu-239	1	0.038 ± 0.004	0.0129 ± 0.0003	0.035 ± 0.009	0.0128 ± 0.0006	F: Tuttle (1975)
	q = 1, 2 (Energy group)		2	0.280 ± 0.006	0.0311 ± 0.0007	0.298 ± 0.035	0.0301 ± 0.0022	T: Keepin et al. (1957)
			3	0.216 ± 0.027	0.1340 ± 0.0040	0.211 ± 0.048	0.1238 ± 0.0088	
			4	0.328 ± 0.015	0.3310 ± 0.0180	0.326 ± 0.033	0.3254 ± 0.0367	
•	Examples		5	0.103 ± 0.013	1.2600 ± 0.1700	0.086 ± 0.029	1.1216 ± 0.3866	
			6	0.035 ± 0.007	3.2100 ± 0.3800	0.044 ± 0.016	2.6971 ± 0.4722	

 $a^{U235}_{3,2}$

 $^{\ a}$ In this table: F refers to fast fission and T refers to thermal fission.

 $\lambda_{2,1}^{U238}$

Keepin, G. R., Wimett, T. F., & Zeigler, R. K. (1957). Delayed neutrons from fissionable isotopes of uranium, plutonium, and thorium. Physical review, 107(4), 1044.
 Tuttle, R. J. (1975). Delayed-neutron data for reactor-physics analysis. Nuclear Science and Engineering, 56(1), 37-71.

Delayed Neutron Data

Table 2: Measured values of absolute delayed neutron yield $(\bar{\nu}_d)$ for the selected actinides plus uncertainty collected from different sources

isotope	$\bar{\nu}_d$ (F)	Source	$\bar{\nu}_d$ (T)	Source
Th-227	-	-	0.00769 ± 0.00115	SCALE Rearden and Jessee (2018)
Th-229	-	-	0.01621 ± 0.00243	SCALE Rearden and Jessee (2018)
Th-232	0.05470 ± 0.00120	Tuttle (1975)	-	-
Pa-231	0.01110 ± 0.00110	Wilson and England (2002)	-	-
U-232	-	-	0.00437 ± 0.00033	Waldo et al. (1981)
U-233	0.00729 ± 0.00019	Tuttle (1975)	0.00664 ± 0.00018	Tuttle (1975)
U-234	0.01060 ± 0.00120	Tuttle (1975)	-	-
U-235	0.01650 ± 0.00075	Keepin (1965)	0.01580 ± 0.00075	Keepin (1965)
U-236	0.02310 ± 0.00260	Tuttle (1975)	-	-
U-238	0.04510 ± 0.00061	Tuttle (1975)	-	-
Np-237	0.01260 ± 0.00070	Saleh et al. (1997)	0.01290 ± 0.00040	Loaiza et al. (1998)
Pu-238	0.00461 ± 0.00073	Waldo et al. (1981)	-	-
Pu-239	0.00664 ± 0.00013	Tuttle (1975)	0.00624 ± 0.00024	Tuttle (1975)
Pu-240	0.00960 ± 0.00110	Tuttle (1975)	-	-
Pu-241	0.01630 ± 0.00160	Tuttle (1975)	0.01560 ± 0.00160	Tuttle (1975)
Pu-242	0.02280 ± 0.00250	Tuttle (1975)	-	-
Am-241	-	-	0.00490 ± 0.00020	Saleh et al. (1997)
Am-243	0.00860 ± 0.00050	Charlton et al. (1997)	0.00800 ± 0.00040	Saleh et al. (1997)
Cm-245	-	-	0.00592 ± 0.00039	Waldo et al. (1981)
Cf-252*	0.00812 ± 0.00053	Wahl (1988)	-	-

*The data for Cf-252 is the delayed neutron yield resulted form spontaneous fission.

Delayed Neutron Data (Selection Criteria)

- In general, the group parameters and absolute yield for most of the fast fission data were taken from Tuttle (1975) due to their high accuracy.
- The group parameters and absolute yield for thermal fission data of U-233, U-235, and Pu-239 were taken from Keepin et al. (1957). Indeed, Tuttle (1975) suggested using Keepin data for thermal fission on the basis of higher quality.
- It is preferred to use the absolute delayed neutron yield from the same study as the group parameters, since the group fractions are calculated (normalized) using the measured delayed neutron yield.

The Framework Features

Supports fundamental delayed neutron data for 20 actinides based on various delayed neutron experiments.

Because of lack of reliable correlation matrices for the delayed neutron data, the framework supports uncorrelated DND.

The user can replace those libraries easily with other libraries sampled using different methods or for point-wise sensitivity analysis.

The framework can be activated easily using the option "perturb_kinetics" in Sampler.

The base DND data libraries "kinetics.dat", "kinetics_var.dat" can be changed easily to account for new isotopes or other DND data sources.

The framework supports kinetics UQ in TRITON and Polaris Sequences in SCALE.

The framework is expected to be a part of Sampler in SCALE-6.3 version.

- Background
- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

Group-Wise Beta Uncertainty (β_i)

Note: the spread is caused by 100 uncertainties in requency DND and XS $\beta_{\rm eff}$ uncertainty ~ 7-9%⁵⁰

1.6

1.8

1.4

Calculations were • based on a pin-cell geometry from UAM benchmark

M. I. Radaideh, W. Wieselquist, T. Kozlowski, M. Jessee (2018)

4.5

Group-Wise Lambda Uncertainty (λ_i)

 Note: the spread is caused by uncertainties in DND and XS

Frequency

 Calculations were based on a pin-cell geometry from UAM benchmark

M. I. Radaideh, W. Wieselquist, T. Kozlowski, M. Jessee (2018)

Burnup-dependent Kinetic Parameters

- The spread is caused by uncertainties in DND and XS
- The error bar is ±1σ around the mean

Convergence Analysis

TRITON vs Polaris

Table 6: Comparison of the kinetic parameters' value and uncertainty between TRITON and Polaris lattice physics codes for a PWR pin-cell

		TRITON		Polaris				
Parameter	Mean	Std	$\operatorname{Relative}(\%)$	Mean	Std	$\operatorname{Relative}(\%)$		
β_1	2.112 E-04	1.755E-05	8.3	2.124E-04	1.716E-05	8.1		
eta_2	1.412E-03	8.752E-05	6.2	1.415E-03	9.422E-05	6.7		
eta_{3}	1.291E-03	1.432E-04	11.1	1.299E-03	1.457E-04	11.2		
eta_4	2.689E-03	1.992E-04	7.4	2.725E-03	2.275 E-04	8.3		
eta_5	8.882E-04	1.131E-04	12.7	9.197 E-04	1.299E-04	14.1		
eta_{6}	2.988E-04	5.305E-05	17.8	3.020E-04	5.516E-05	18.3		
β_{eff}	6.790 E-03	5.064E-04	7.5	6.873E-03	5.785 E-04	8.4		
λ_1	1.249E-02	2.411E-04	1.9	1.252 E-02	2.263E-04	1.8		
λ_2	3.081E-02	7.982E-04	2.6	3.089E-02	7.525E-04	2.4		
λ_3	1.148E-01	3.572E-03	3.1	1.155E-01	3.511E-03	3.0		
λ_4	3.092E-01	9.565 E-03	3.1	3.109E-01	9.306E-03	3.0		
λ_5	1.224E + 00	1.092E-01	8.9	1.244E + 00	1.006E-01	8.1		
λ_6	3.294E + 00	2.696E-01	8.2	3.353E + 00	2.609E-01	7.8		
λ_{eff}	8.126E-02	3.004E-03	3.7	8.210 E-02	3.184E-03	3.9		

- Background
- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

Beta Sensitivities

- Background
- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

Input/output Relationship

• General input/output relationship

 $\vec{y} = f(\vec{x}) = f(x_1, x_2, ..., x_d)$ $p(\vec{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} exp[\frac{1}{2}(\vec{x} - \mu)^T \Sigma^{-1}(\vec{x} - \mu)]$

- f(x): could be a simulation code you use in your lab
- \vec{x} : a set of input parameters you provided to your code (e.g. density, thermal conductivity, etc.)
- \vec{y} : response calculated by the code (e.g. temperature, pressure, neutron flux, delayed neutron fraction)
- For demonstration:
 - Assume BOL (U-235, U-238).
 - Assume no correlation between parameters.

$$\vec{x}^{U235} = a_{1,1}^{U235}, \dots, a_{6,1}^{U235}, a_{1,2}^{U235}, \dots, a_{6,2}^{U235}, \lambda_{1,1}^{U235}, \dots, \lambda_{6,1}^{U235}, \lambda_{1,2}^{U235}, \dots, \lambda_{6,2}, Y_{,1}^{235}, Y_{,2}^{235}$$

$$\vec{x}^{U238} = a_{1,1}^{U238}, \dots, a_{6,1}^{U238}, \lambda_{1,1}^{U235}, \dots, \lambda_{6,1}^{U235}, Y_{,1}^{235} (d = 13)$$

$$\vec{y} = \beta_1, \beta_2, \dots, \beta_6, \beta_{eff}, \lambda_1, \lambda_2, \dots, \lambda_6, \lambda_{eff} (d = 14)$$

Reduced Order Modeling

Multiple Linear Regression (MLR) and Gaussian Process (GP)

 $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i(p-1)} + \epsilon_i, \qquad i = 1, 2, \dots, n$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1(p-1)} \\ 1 & x_{21} & x_{22} & \cdots & x_{2(p-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{n(p-1)} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$Y = X\beta + \epsilon$$

$$\vec{y} = [y_1, y_2, ..., y_n]^T$$
$$\mathbf{X} = [\vec{x}^1, \vec{x}^2, ..., \vec{x}^n]^T$$
$$y(\vec{x}) = \sum_{i=0}^k \beta_i \phi_i(\vec{x}) + z(\vec{x})$$

- validation set not training set to avoid overfitting.
- Advantage of linearity between DND and kinetic parameters.

[1] M.I. Radaideh, W. Wieslquist, T. Kozlowski. Sensitivity and Uncertainty Analysis of Delayed Neutron Data in LWRs, BEPU2018, May 13-19, Luuca, Italy.

- Background
- The Framework Description
- Preliminary Analysis

• Applications

- Sensitivity Analysis
- Reduced Order Modeling
- ROM-based UQ
- Variance Decomposition by Sobol indices
- Summary

ROM-based UQ

				β ₁				
	Parameter	SCALE	FON	M-MLR	ROM-	MLR	ROM-GP	
Uncertainty propagated	μ	2.0822E-	04 2.08	340E-04	2.0838	8E-04	2.0858E-04	
here is due to DND only.	σ	1.9196E-	05 1.90)76E-05	1.9143	3E-05	1.9162 E-05	
XS source was turned	$\frac{\sigma}{\mu}\%$	9.	22	9.15		9.19	9.20	
off.	$\lambda_{ m eff}$							
	Parameter	SCALE	FOI	M-MLR	ROM-	MLR	ROM-GP	
	μ	8.3545E	02 8.35	550E-02	8.357	2E-02	8.3656E-02	
	σ	2.4675 E	03 2.43	319E-03	2.404	5E-03	2.4069E-03	
	$\frac{\sigma}{\mu}\%$	2	.95	2.91		2.88	2.88	
		Computati	onal time	based on	500 san	nples		
	SCA	LE FO	M-MLR	ROM-	MLR	ROM-	GP	
	41.7	7 hr 9	.0E-03 s	4.0E	-03 s	1	.7 s	

M. I. Radaideh, W. Wieselquist, T. Kozlowski, M. Jessee (2018)

- Background
- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

Sobol Indices (Analysis of Response Variance)

$$S_i = \frac{D_i}{D}$$
 $T_i = \frac{D_i^T}{D}$

D: total response variance.

 D_i : response variance from parameter x_i alone.

 D_i^T : response variance from paramter x_i and its interactions with other parameters.

- S_i (First order index): describes the contribution to the output variance of the main effect of X_i , therefore it measures the effect of varying X_i alone.
- T_i (Total index): describes the contribution to the output variance of X_i , including all variances caused by its interactions, of any order, with any other input parameters.

$$\sum_{1 \le i \le d} S_i + \sum_{1 \le i < j \le d} S_{ij} + \sum_{1 \le i < j < k \le d} S_{ijk} + \dots = 1$$

Sobol Indices (Analysis of Response Variance)

$$S_i = \frac{D_i}{D}$$
 $T_i = \frac{D_i^T}{D}$

 $f_0 = \int_{D_X} f(\vec{x}) p(\vec{x}) d\vec{x}$ $D = \int_{D_X} f^2(\vec{x}) p(\vec{x}) d\vec{x} - f_0^2$ $D_i = \int_{D_Y} f(\vec{x}) p(\vec{x}) f(x_i, \vec{x}'_{\sim i}) p(\vec{x}'_{\sim i}) dx$ The notation $\sim i$ is $\vec{x}_{\sim i} = (x_i - x_i)$

The notation $\sim i$ means all input paramters except i $\vec{x}_{\sim i} = (x_1, ..., x_{i-1}, x_{i+1}, ..., x_d)$

• Analytical solution to the Sobol indices is not always found, Monte Carlo integration can be used

$$\hat{f}_0 = \frac{1}{N} \sum_{i=1}^N f(x^{(i)})$$
 where $x^{(i)}$ are iid samples from $p(\vec{x})$

 β_{eff} Sobol Indices (BOL)

M. I. Radaideh, W. Wieselquist, T. Kozlowski, M. Jessee (2018)

- Background
- The Framework Description
- Preliminary Analysis
- Applications
 - Sensitivity Analysis
 - Reduced Order Modeling
 - ROM-based UQ
 - Variance Decomposition by Sobol indices
- Summary

Summary

- A data-driven approach sampling-based approach for UQ of kinetic parameters was developed.
- The new approach includes the uncertainty in the measured precursor group parameters in kinetic parameters calculations.
- Uncertainty provided here is expected to be higher than the usual approach of β_{eff} calculations (k-ratio) since additional input paramtetrs are considered.
- The framework is flexible and can be used in various applications such as sensitivity analysis, reduced order modeling, data assimilation, and variance decomposition.

Our Publications (for more info)

- The kinetics UQ framework was firstly introduced sat PHYSOR-2018 (Mexico).
- The PHYSOR paper is selected later for publication at its special issue (will appear in **Annals of Nuclear Energy** by the end of this year).
- Improving the flexibility of the framework for sensitivity, ROM, and ROM-based UQ was introduced at **BEPU-2018 (Italy)**.
- A rigorous variance-based sensitivity analysis of the DND using Sobol decomposition methods will be introduced at **PHYTRA4 (Morocco)**.
- A journal article about the framework development with a comprehensive look on kinetic parameters' sensitivity and uncertainty will be submitted to Nuclear Engineering and Design soon.

Thank You!

- R. Tuttle, Delayed-neutron data for reactor-physics analysis, Nuclear Science and Engineering 56 (1) (1975) 37-71.
- W. Wilson, T. England, Delayed neutron study using ENDF/B-VI basic nuclear data, Progress in Nuclear Energy 41 (1-4) (2002) 71–107
- R. Waldo, R. Karam, R. Meyer, Delayed neutron yields: Time dependent measurements and a predictive model, Physical Review C 23 (3) (1981) 1113.
- D. J. Loaiza, G. Brunson, R. Sanchez, K. Butterfield, Measurements of Absolute Delayed Neutron Yield and Group Constants in the Fast Fission of ²³⁵U and ²³⁷Np, Nuclear science and engineering 128 (3) (1998) 270–277.
- G. R. Keepin, T. Wimett, R. Zeigler, Delayed neutrons from fissionable isotopes of uranium, plutonium, and thorium, Physical review 107 (4) (1957) 1044.
- H. H. Saleh, T. A. Parish, S. Raman, N. Shinohara, Measurements of delayed neutron decay constants and fission yields from ²³⁵U, ²³⁷Np, ²⁴¹Am, and ²⁴³Am, Nuclear science and engineering 125 (1) (1997) 51–60.
- D. J. Loaiza, G. Brunson, R. Sanchez, K. Butterfield, Measurements of Absolute Delayed Neutron Yield and Group Constants in the Fast Fission of ²³⁵U and ²³⁷Np, Nuclear science and engineering 128 (3) (1998) 270–277.
- M. I. Radaideh, W. Wieselquist, T. Kozlowski, Sampling-Based Uncertainty Quantitation of the Six-group Kinetic Parameters, Proc. Physics of Reactors (PHYSOR-2018), Cancun, Mexico, April 22-26, 2018.
- M. I. Radaideh, W. Wieselquist, T. Kozlowski, A Framework for Sampling-based Uncertainty Quantification of the Six-group Reactor Kinetic Parameters, Submitted to Annals of Nuclear Energy.
- M. I. Radaideh, W. Wieselquist, T. Kozlowski, Sensitivity and Uncertainty Analysis of the Fundamental Delayed Neutron Data, Proc. Best Estimate Plus Uncertainty (BEPU-2018), Lucca, Italy, May 13-19, 2018.

