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Multiphysics simulations are required for MSRs
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Existing Reactor Physics and Thermal Hydraulics
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Adapting CASL tools for MSR analysis

« In FY17, ORNL funded an LDRD to adapt tools developed for the
CASL program to model molten salt reactors
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VERA Core Simulator Methods

Virtual Environment for Reactor Applications
WB1C11 Beginning-of-

Cycle Pin Power CTF

Distribution

Subchannel thermal-hydraulics with
transient two-fluid, three-field (i.e., liquid
film, liquid drops, and vapor) solutions in
14,000 coolant channels with crossflow
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ORIGEN

Isotopic depletion and decay in >2M
regions tracking 263 isotopes

MPACT

Advanced pin-resolved 3-D whole-
core neutron transport in 51 energy
groups and >5M unigue cross sectior

regions

WB1C11 Middle-of-Cycle Coolant Density Distribution




Demonstration of coupled calulation

Critical configuration
First moderator bank inserted to 66%
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Molten Salt Reactor Experiment Modeling

« Extending geometry capability to
support wide range of advanced
reactors

« Setting up models based on first
critical with U-235

« Gathering data on additional
critical configurations and
transient tests
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Extending geometry to support more
reactors

Hexagonal Pitch Graphite Moderated

Molten Chloride Reactor
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Extensions to CTF

- Extensions to add salt properties

e Addition of system components
for testing

« General species transport module

« Interface with mass transport
— Chemical reactions
— Nuclear production/decay
— Corrosion/deposition models

Density in Primary Loop MSRE Model
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Build in unigue capabllity related to MSRs
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Two-phase boundary condition
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Convection boundary condition
J
_Dj E = kcj(Nj(interface) - N] bulk)
B

Liquid gas interface
Nii = KNg;

K is a proportionality constant which
can be estimated using Henry’s Law
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Initial results gas T
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Initial Results noble metal transport
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Mass Transport with Nuclear Decay
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Thermochemistry

e Developing equilibrium thermochemistry code Thermochimica to add
guasi-chemical model for ionic liquids

e CTF/MPACT provide local temperature, pressure, and elemental
fractions

e Thermochemistry can provide
— Phase / chemical state
— Fluid density / specific heat
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Putting it all together

e Coupled neutron transport, TH, and delayed precursor

« 20 cent reactivity insertion
numerically implied at t=0

Delayed Neutron Precursor
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Fully coupled multiphysics transient demonstration
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