

Detailed SCALE Dose Rate Evaluations for a Consolidated Interim Spent Nuclear Fuel Storage Facility

SCALE Users' Group Workshop September 27–29, 2018

Georgeta Radulescu Thomas Miller Kaushik Banerjee Douglas Peplow

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Introduction
- Description of a proposed consolidated interim storage facility (CISF)
- Dose rate calculation method
- CISF model
- Dose rate calculation results

Introduction

- Purpose of calculation
 - Support US Nuclear Regulatory Commission (NRC) shielding review of the license application for a proposed CISF
- Two-step method typically used in license applications
 - Step1: Determine particle energy and angular distributions on cask external surface
 - Step 2: Use the surface source in a new radiation transport calculation
 - Method drawback: The space/energy/angle distribution of the particles coming off the cask needs to be binned, stored, and then resampled in the second step
- Detailed Monte Carlo radiation transport simulation in one step (from source to dose rate) used in this work
 - SCALE* for source term calculations and Monte Carlo radiation transport simulations
 - A series of simulations using complete site geometry (all casks present) but with only one cask containing source
 - Total dose rate calculated as the sum of uncorrelated dose rate values from separate calculations

*B. T. REARDEN and M. A. JESSEE, Eds., "SCALE Code System," ORNL/TM-2005/39, Version 6.2.3, Oak Ridge National Laboratory (2018). Available from Radiation Safety Information Computational Center as CCC-834.

Proposed Consolidated Interim Storage Facility (Phase 1)*

- Conceptual design of the Phase 1 CISF (467 casks)
- 319 NAC vertical storage casks
- 148 NUHOMS[®] horizontal storage modules
- Purpose of the calculations is to determine location of controlled area boundary based on the annual dose requirement of 0.25 mSv (25 mrem) in 10 CFR 72.104(a)[†]

* WCS Consolidated Interim Storage Facility Safety Analysis Report; <u>https://www.nrc.gov/docs/ML1613/ML16133A134.pdf</u>. † 10 CFR Part 72, License Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater that Class C Waste.

MAVRIC* Shielding Calculation Sequence in SCALE

- Monte Carlo radiation transport code Monaco
- Automated variance reduction Denovo[†] discrete ordinates code
- Multigroup and continuous-energy cross-section data for the Monte Carlo
 transport
- Mesh, point detector, and region tallies
- Large number of different photon and neutron sources
- Source spectrum and strength values directly from ORIGEN binary files
 - Radiation source terms determined with ORIGAMI in the SCALE code system
- Dose rate map using a cylindrical tally mesh
- Utilities for post-processing mesh tally files

* D. E. PEPLOW, "Monte Carlo Shielding Analysis Capabilities with MAVRIC," Nucl. Technol. 174(2), 289–313 (2011).
 * T. M. EVANS et al., "Denovo: A New Three Dimensional Parallel Discrete Ordinates Code in SCALE," Nucl. Technol. 171(2), 171–200 (2010).

Variance Reduction Method

- Forward-weighted consistent adjoint driven importance sampling (FW-CADIS)* method
 - Produces acceptable statistical accuracy of dose rate estimates within every geometry region outside a storage cask
 - Requires both forward and adjoint discrete ordinates calculations with Denovo
 - Generates energy- and space-dependent source biasing and particle importance parameters
- Effects
 - Particles that make important contributions to dose rate are sampled more often to increase calculation efficiency
 - Particles reaching tally regions have similar weight values, thereby reducing the statistical variance of the Monte Carlo estimate

*J. C. WAGNER, D. E. PEPLOW, and S. W. MOSHER, "FW-CADIS Method for Global and Regional Variance Reduction of Monte Carlo Radiation Transport Calculations," *Nucl. Sci. Eng.* **176**(1), 37–57 (2014).

Phase 1 CISF Model

- Seven different NAC vertical storage systems and NUHOMS[®] horizontal storage systems
- Seven different design basis fuel assemblies
 - Various array sizes (e.g., BWR 7x7, PWR 14x14 to 17x17)
 - Average burnup ranging from 25 GWd/MTU to 62 GWd/MTU and cooling time ranging from 3 years to 21.4 years
- The concrete pad is 243.84 m x 106.68 m x 30 cm

Image from KENO-3D of the Phase 1 CISF

Cross-sectional Views of Individual Cask Models

NAC Vertical Concrete Casks

NUHOMS[®] Horizontal Storage Modules

8

Modeling Parameter Optimization

- Volume of the surrounding air and soil
 - Soil modeled to 1 m in depth
 - Air volume gradually increased until minimal effects were noticed on the total dose rate at anticipated controlled area boundary location
 - Model geometry dimensions: 2700 m × 2600 m × 960 m
- Adjoint source region for Denovo adjoint calculations
 - Defined within the air region outside the storage pad
 - Extending from the soil top to 2 m above the soil
- Parameters describing the angular scattering in Denovo S_{N} calculations
 - S_4/P_3 (quadrature order =4; number of Legendre polynomials=3)
- Denovo mesh definition
 - Fine mesh for the volume of the analyzed storage cask and its adjacent casks
 - Coarse mesh elsewhere
- Tally mesh size: 15.24 m \times 15.24 m \times 2 m
- Computer time per case ~36 hours (MC relative statistical error per case < 20%)
 CAK RIDGE National Laboratory

Total Dose Contours Surrounding the Phase 1 CISF

- The mesh tally only has one cell in the vertical direction, which extends from the top of the soil to 2 m above the soil
- Voxel size: 15.24m x 15.24m x 2m
- The dose response function from ANSI/ANS-1977* (recommendation in NUREG-1536*)

Dose rate (mrem/yr) map: 2713 m x 2576 m The black line encloses the 25 mrem/yr contour and denotes the smallest rectangle that could serve as the controlled area boundary

Dose rate error at the controlled area boundary < 10%

* American National Standard Neutron and Gamma-Ray Flux-to-Dose-Rate Factors, ANSI/ANS 6.1.1-1977, American Nuclear Society (1977). * "Standard Review Plan for Spent Fuel Dry Storage System at a General License Facility," NUREG-1536 Rev.1, US Nuclear Regulatory Commission (2010).

CAK RIDGE

10

25 mrem/yr Dose Rate Contour

- Dose contours fit inside a box with these dimensions: 1.25 km x 1.25 km
- Individual cask contribution depends on cask shielding design, design basis radiation sources, and its relative location within the storage pad.

11

Conclusions

- Evaluation of controlled area boundary for a proposed consolidated interim spent fuel storage facility to support NRC review of license application
- SCALE provides capabilities for detailed shielding analyses of individual SNF casks and large spent fuel dry storage facilities
- MAVRIC Monte Carlo shielding analysis sequence
 - Automated variance reduction to efficiently generate detailed dose rate maps
- ORNL institutional computer resources available to perform large number of calculations

Acknowledgements

 This work was supported by the US Nuclear Regulatory Commission, Office of Nuclear Materials Safety and Safeguards, Division of Spent Fuel Management

Thank you for your attention!

