

Analytical Geometry and Enriched Uranium Solutions in SCALE: Two H-Canyon Studies

Tracy Stover, Ph.D., P.E.

Principle Engineer, Nuclear and Criticality Safety Engineering *SCALE Users' Workshop August 2018*

Overview

- Part 1: Simple Model and Complex Physics Behavior —HEU Solution stored in sloped bottom tanks
 - -Projected Areal Density
 - Function relationship
- Part 2: Complex Model and Simple Behavior
 - -Section 6 Hot of H-Canyon
 - Dissolver Operations
 - -Do dissolvers see each other?

- Investigation was made to establish a mass limit for H-Canyon vessels based on areal density
 - -Most vessels have sloped bottoms
 - –In some cases, areal density based mass limits were still usable
- Is there a functional relationship between slope of the tank and the use of an areal density based mass?
- What does areal density mean in light of sloped tanks?

Background

- Areal density projects the mass of a 3-D system onto a single plane — Physically comparable to infinite slab of certain thickness
 - Well-understood, experimental basis, easily modeled in computational codes
- Assumes that the surface of projection is orthonormal to the remaining dimensions of the system
 - Most commonly project vertical axis onto x-y plane to reference material staged on a floor, tank, table, etc.
- In sloped bottom tanks, the bottom plane is not orthonormal to the remaining dimensions!
 - Flat is not always economic, convenient, available, or safe from a chemical or processing hazard aspect

Background

- Is there a relationship between slope, area, and what may be called a *projected* areal density (PAD) where the plane of projection is not orthonormal to the other dimensions?
- <u>Remember</u>: Areal density is a mathematical construct
 - –Modifying the construct in this work, the projection surface is sloped \rightarrow PAD

 Computational modeling performed in KENO-VI of SCALE 6.1

-Validated internally for use in HEU aqueous systems

- Calculations parallel data available in LA-10860 —pure ²³⁵UO₂(NO₃)₂
 - -no excess nitric acid (removes poisoning effect)
 - -full reflection modeled by 60 cm of water in all directions -reflective boundary conditions.
- Used the KENO macrobody of a rotated wedge to simulate sloping of the bottom head.

Tank Radii

-51.4, 70.5, 121.0, and 150.5 cm

• Slopes

-0, 3.15, 5, 7.5, 10, 15 %

- For fixed slope and radius, vary the solution height from 6.35 cm to 300 cm
- Critical concentration search
 - -within 1.000 +/- 0.001
 - statistical uncertainty less than 0.001
 Δk
- Can back calculate fissile mass, H/fissile, etc.

- PAD presented here is defined as projected onto the solution surface
 - Data could easily be renormalized to project onto the sloped tank bottom.
 - Similar results are obtained from this approach
- When solution height is less than depth of the "shallow end", solution takes on shape of a truncated wedge.
 - -No reason limiting PAD would not occur in these conditions

Methodology – Partially Filled Sloped Bottom

Volume requires numerical integration

-Integrate area over height

• If deep end depth is *h* and fraction slope of the tank is *I*, then volume of the solution is:

$$V_{S} = \int_{0}^{h} \left\{ \frac{-r^{2}}{2} \left[\left(2 \operatorname{acos} \left(1 - \frac{2r - h'/l}{r} \right) \right) - \sin \left(2 \operatorname{acos} \left(1 - \frac{2r - h'/l}{r} \right) \right) \right] + [\pi r^{2}] \right\} dh'$$

• Line *a* is the line solution makes with the shallow end of the tank

Methodology – Partially Filled Sloped Bottom

- As is the surface area we are interested in
- Area of the yellow segment is

$$\frac{r^2}{2}(\theta - \sin\theta)$$

- Knowing 2r = Q + L
- L is determined by depth of solution and fractional slope
- At a solution depth of h' $\theta = 2 \arccos \left(1 \frac{2r h'/l}{r} \right)$

- For each radius and slope, determined the minimum PAD that would result in a critical configuration
 - -As would be done with areal density on flat bottoms tanks
 - -Critical heights are measured from the "deep end" of the solution, i.e. the point that would be tangent to the low end tank wall

Results – PAD

• Minimum PAD (g U-235/cm²) for various conditions

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
0%	0.4919	0.4669	0.4456	0.4414
3.15%	0.4904	0.4588	0.4022	0.3677
5%	0.4868	0.4476	0.3507	0.2845
7.5%	0.4781	0.4219	0.2886	0.2651
10%	0.4685	0.3887	0.2753	0.2627
15%	0.4305	0.3335	0.2803	0.2713

- Can be translated into more physical quantities
 - -Mass (g): 3580 to 31400 depending on tank size
 - -<u>Concentration (g U-235/L)</u>: 25.5 to 44.0, average 31.6
 - -<u>H/U-235</u>: 575 to 1015, average 825

Results – Overall Behavior Fitted

Results – Function Fit

- PAD = $(6.199^{*}10^{-8})s^{2}r^{2} + (8.786^{*}10^{-7})sr^{2} + (2.126^{*}10^{-6})r^{2} + (9.071^{*}10^{-6})s^{2}r (5.674^{*}10^{-4})sr (8.537^{*}10^{-4})r (1.086^{*}10^{-3})s^{2} + (2.919^{*}10^{-2})s + (5.262^{*}10^{-1})$
- Fit Predicted PAD Percent Different with Calculated:

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
0%	-0.81	2.08	1.89	1.02
3.15%	0.06	-0.85	-5.67	-5.30
5%	0.29	-1.50	-1.91	7.70
7.5%	0.36	-0.33	6.13	1.21
10%	-0.60	2.47	1.71	-4.38
15%	-2.35	4.59	-6.60	3.24

- PAD relationship found to be approximately parabolic in radius and slope
- Could be used to adjust down the ANS 8.1 single parameter areal density by this trend (function or data)
 - —apply lower PAD to the cross-sectional area of the tank in question
 - -some small additional margin
- Could select the lowest PAD and apply that value —Provided radius and slope are bounded by the available data

Section 6 Hot – Complex Model for Simple Question

- Canyon is divided into warm and hot sides based on intensity of radiation from the processes
- Divided into 18 sections
- Section 6 Hot contains dissolution operations
- Primary objective to generate highly detailed model of Section 6 Hot
 - -Beyond single vessel, homogenous fuel simplified models
- Do the vessels communicate neutronically?

Results Part 2 – As Modeled

- 6.1D k-effective: 0.6628
- 6.2R/F k-effective: 0.0000 (No fissile assumed)
- Sump k-effective: 0.2673
- 6.3D k-effective: 0.4167
- 6.4D k-effective: 0.7587
- 6 Hot k-effective: 0.7592
- Communication: No
 —As expected

Questions

· · · · · · · · · · · · · · · · · · ·	

Additional Slides

Results – Overall Behavior – Wedge Limited

• Height at which Solution Breaks Plane of Shallow End

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
3.15%	3.24	4.44	7.62	9.48
5%	5.14	7.05	12.10	15.05
7.5%	7.72	10.57	18.15	22.57
10%	10.29	14.10	24.19	30.10
15%	15.43	21.15	36.29	45.15

• Highlighted cases are where minimum PAD occurred in truncated wedge shape

Results - PAD

Results - PAD

Results - PAD

Results – Overall Behavior

• Fitted PAD

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
0%	0.4879	0.4766	0.4540	0.4459
3.15%	0.4907	0.4549	0.3794	0.3482
5%	0.4882	0.4409	0.3440	0.3064
7.5%	0.4798	0.4205	0.3063	0.2683
10%	0.4657	0.3983	0.2800	0.2512
15%	0.4204	0.3488	0.2618	0.2801

• Height at which Solution Breaks Plane of Shallow End

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
3.15%	3.24	4.44	7.62	9.48
5%	5.14	7.05	12.10	15.05
7.5%	7.72	10.57	18.15	22.57
10%	10.29	14.10	24.19	30.10
15%	15.43	21.15	36.29	45.15

• Highlighted cases are where minimum PAD occurred in a dncated wedge shape

	51.4	70.5	121.0	150.5
Slope	cm radius	cm radius	cm radius	cm radius
0%	0.4879	0.4766	0.4540	0.4459
3.15%	0.4907	0.4549	0.3794	0.3482
5%	0.4882	0.4409	0.3440	0.3064
7.5%	0.4798	0.4205	0.3063	0.2683
10%	0.4657	0.3983	0.2800	0.2512
15%	0.4204	0.3488	0.2618	0.2801