Analytical Geometry and Enriched Uranium Solutions in SCALE: Two H-Canyon Studies

Tracy Stover, Ph.D., P.E.

Principle Engineer, Nuclear and Criticality Safety Engineering
scale Users' Workshop
August 2018

Overview

- Part 1: Simple Model and Complex Physics Behavior
-HEU Solution stored in sloped bottom tanks
-Projected Areal Density
- Function relationship
- Part 2: Complex Model and Simple Behavior
-Section 6 Hot of H-Canyon
- Dissolver Operations
-Do dissolvers see each other?

Part 1

Motivation for Inquiry

- Investigation was made to establish a mass limit for H Canyon vessels based on areal density
-Most vessels have sloped bottoms
-In some cases, areal density based mass limits were still usable
- Is there a functional relationship between slope of the tank and the use of an areal density based mass?
-What does areal density mean in light of sloped tanks?

Background

- Areal density projects the mass of a 3-D system onto a single plane
-Physically comparable to infinite slab of certain thickness
-Well-understood, experimental basis, easily modeled in computational codes
- Assumes that the surface of projection is orthonormal to the remaining dimensions of the system
-Most commonly project vertical axis onto x-y plane to reference material staged on a floor, tank, table, etc.
- In sloped bottom tanks, the bottom plane is not orthonormal to the remaining dimensions!
-Flat is not always economic, convenient, available, or safe from a chemical or processing hazard aspect

Background

- Is there a relationship between slope, area, and what may be called a projected areal density (PAD) where the plane of projection is not orthonormal to the other dimensions?
- Remember: Areal density is a mathematical construct
-Modifying the construct in this work, the projection surface is sloped \rightarrow PAD

Analytical Approach

- Computational modeling performed in KENO-VI of SCALE 6.1
-Validated internally for use in HEU aqueous systems
- Calculations parallel data available in LA-10860
-pure ${ }^{235} \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
-no excess nitric acid (removes poisoning effect)
-full reflection modeled by 60 cm of water in all directions
-reflective boundary conditions.
- Used the KENO macrobody of a rotated wedge to simulate sloping of the bottom head.

Analytical Approach

- Tank Radii
-51.4, 70.5, 121.0, and 150.5 cm
- Slopes
$-0,3.15,5,7.5,10,15 \%$
- For fixed slope and radius, vary the solution height from 6.35 cm to 300 cm
- Critical concentration search
-within $1.000+/-0.001$
-statistical uncertainty less than 0.001
 Δk
- Can back calculate fissile mass, H/fissile, etc.

Analytical Approach

- PAD presented here is defined as projected onto the solution surface
-Data could easily be renormalized to project onto the sloped tank bottom.
- Similar results are obtained from this approach
- When solution height is less than depth of the "shallow end", solution takes on shape of a truncated wedge. -No reason limiting PAD would not occur in these conditions

Methodology - Partially Filled Sloped Bottom

- Volume requires numerical integration
-Integrate area over height
- If deep end depth is h and fraction slope of the tank is I, then volume of the solution is:

$$
\begin{aligned}
& V_{S} \\
& =\int_{0}^{h}\left\{\frac { - r ^ { 2 } } { 2 } \left[\left(2 \operatorname{acos}\left(1-\frac{2 r-h^{\prime} / l}{r}\right)\right)\right.\right. \\
& \left.\left.-\sin \left(2 \operatorname{acos}\left(1-\frac{2 r-h^{\prime} / l}{r}\right)\right)\right]+\left[\pi r^{2}\right]\right\} d h^{\prime}
\end{aligned}
$$

- Line a is the line solution makes with the shallow end of the tank

Methodology - Partially Filled Sloped Bottom

- As is the surface area we are interested in
- Area of the yellow segment is

$$
\frac{r^{2}}{2}(\theta-\sin \theta)
$$

- Knowing $2 \mathrm{r}=\mathrm{Q}+\mathrm{L}$
- L is determined by depth of solution and
 fractional slope
- At a solution depth of $\mathrm{h}^{\prime} \theta=2 \operatorname{acos}\left(1-\frac{2 r-h^{\prime} / l}{r}\right)$

Results - PAD

- For each radius and slope, determined the minimum PAD that would result in a critical configuration
-As would be done with areal density on flat bottoms tanks -Critical heights are measured from the "deep end" of the solution, i.e. the point that would be tangent to the low end tank wall

Results - PAD

PAD for $\mathbf{1 2 1 . 0}$ cm Radius Tank

Results - PAD

- Minimum PAD ($\mathrm{g} \mathrm{U}-235 / \mathrm{cm}^{2}$) for various conditions

Slope	51.4 cm radius	70.5 cm radius	121.0 cm radius	1.50 .5 cm radius
0%	0.4919	0.4669	0.4456	0.4414
3.15%	0.4904	0.4588	0.4022	0.3677
5%	0.4868	0.4476	0.3507	0.2845
7.5%	0.4781	0.4219	0.2886	0.2651
10%	0.4685	0.3887	0.2753	0.2627
1.5%	0.4305	0.3335	0.2803	0.2713

- Can be translated into more physical quantities
- Mass (g): 3580 to 31400 depending on tank size
-Concentration (g U-235/L): 25.5 to 44.0, average 31.6
- H/U-235: 575 to 1015, average 825

Results - Overall Behavior Fitted

Behavior of PAD in Sloped Tanks

Results - Coefficient Fitting

Behavior of Fitting Coefficients

$$
-\mathrm{x}^{\wedge} 2-\mathrm{x}-\operatorname{int}
$$

Results - Function Fit

- PAD $=\left(6.199 * 10^{-8}\right) \mathrm{s}^{2} \mathrm{r}^{2}+\left(8.786^{*} 10^{-7}\right) \mathrm{sr}^{2}+\left(2.126^{*} 10^{-6}\right) \mathrm{r}^{2}+$ $\left(9.071^{*} 10^{-6}\right) s^{2} r-\left(5.674 * 10^{-4}\right) \mathrm{sr}-\left(8.537^{*} 10^{-4}\right) \mathrm{r}-$
$\left(1.086^{*} 10^{-3}\right) s^{2}+\left(2.919^{*} 10^{-2}\right) s+\left(5.262^{*} 10^{-1}\right)$
- Fit Predicted PAD Percent Different with Calculated:

Slope	51.4 cm radius	70.5 cm radius	121.0 cm radius	150.5 cm radius
0%	-0.81	2.08	1.89	1.02
3.15%	0.06	-0.85	-5.67	-5.30
5%	0.29	-1.50	-1.91	7.70
7.5%	0.36	-0.33	6.13	1.21
10%	-0.60	2.47	1.71	-4.38
15%	-2.35	4.59	-6.60	3.24

Conclusions - Part 1

- PAD relationship found to be approximately parabolic in radius and slope
- Could be used to adjust down the ANS 8.1 single parameter areal density by this trend (function or data)
-apply lower PAD to the cross-sectional area of the tank in question
-some small additional margin
- Could select the lowest PAD and apply that value
-Provided radius and slope are bounded by the available data

Part 2

Section 6 Hot - Complex Model for Simple Question

- Canyon is divided into warm and hot sides based on intensity of radiation from the processes
- Divided into 18 sections
- Section 6 Hot contains dissolution operations
- Primary objective to generate highly detailed model of Section 6 Hot
-Beyond single vessel, homogenous fuel simplified models
- Do the vessels communicate neutronically?

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

SAVANNAH RIVER NUCLEAR SOLUTIONS

Results Part 2 - As Modeled

- 6.1D k-effective: 0.6628
- 6.2R/F k-effective: 0.0000 (No fissile assumed)
- Sump k-effective: 0.2673
-6.3D k-effective: 0.4167
- 6.4D k-effective: 0.7587
- 6 Hot k-effective: 0.7592
- Communication: No
-As expected

Questions

Additional Slides

Results - Overall Behavior - Wedge Limited

- Height at which Solution Breaks Plane of Shallow End

Slope	51.4 cm radius	70.5 cm radius	121.0 cm radius	150.5 cm radius
3.15%	3.24	4.44	7.62	9.48
5%	5.14	7.05	12.10	15.05
7.5%	7.72	10.57	18.15	22.57
10%	10.29	14.10	24.19	30.10
15%	15.43	21.15	36.29	45.15

- Highlighted cases are where minimum PAD occurred in truncated wedge shape

Results - PAD

Results - PAD

PAD for 70.5 cm Radius Tank

Results - PAD

Results - Overall Behavior

Behavior of PAD in Sloped Tanks

- Fitted PAD

Slope	51.4 cm radius	70.5 cm radius	121.0 cm radius	150.5 cm radius
0%	0.4879	0.4766	0.4540	0.4459
3.15%	0.4907	0.4549	0.3794	0.3482
5%	0.4882	0.4409	0.3440	0.3064
7.5%	0.4798	0.4205	0.3063	0.2683
10%	0.4657	0.3983	0.2800	0.2512
15%	0.4204	0.3488	0.2618	0.2801

\qquad
\qquad

- Height at which Solution Breaks Plane of Shallow End

Slope	51.4 cm radius	70.5 cm radius	121.0 cm radius	150.5 cm radius
3.15%	3.24	4.44	7.62	9.48
5%	5.14	7.05	12.10	15.05
7.5%	7.72	10.57	18.15	22.57
10%	10.29	14.10	24.19	30.10
15%	15.43	21.15	36.29	45.15

 wedge shape

PAD for 51.4 cm Tank

Slope	cm radius	cm radius	cm radius	cm radius
0%	0.4879	0.4766	0.4540	0.4459
3.15%	0.4907	0.4549	0.3794	0.3482
5%	0.4882	0.4409	0.3440	0.3064
7.5%	0.4798	0.4205	0.3063	0.2683
10%	0.4657	0.3983	0.2800	0.2512
15%	0.4204	0.3488	0.2618	0.2801

