

Criticality Validation of SCALE 6.2

E. M. Saylor B. J. Marshall J. B. Clarity Z. J. Clifton B. T. Rearden

2018 SCALE Users' Group Workshop

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Introduction
- Critical Experiments Used
- Results
- Conclusions

Introduction

- Validation effort demonstrates the general performance of the KENO V.a and KENO-VI codes across a wide range of systems
 - 15 experiment categories, > 600 individual cases
- Benchmarks are all from ICSBEP Handbook and included in the VALID library maintained at ORNL
- Models are executed using
 - 238-group and continuous energy libraries based on ENDF/B-VII.0
 - 56-group, 252-group, 200-group, and continuous energy libraries based on ENDF/B-VII.1
- Comparison of KENO V.a to KENO-VI using ENDF/B-VII.1
 continuous energy library

Valid procedure and library contents

- <u>V</u>erified, <u>Archived Library of Inputs and Data procedure is a SCALE project computational procedure at ORNL
 </u>
- Quality behind VALID:
 - Independent preparation and review of models and documentation
 - Individuals must be certified as qualified for task assigned
 - Version control maintained on data
 - Data and documentation backed up and retrievable
- For more information on VALID, see NCSD 2013 presentation

Critical experiments used

Cases in blue are new since	Sequence	Experiment class	ICSBEP case numbers	Number of configurations
SCALE 6.1 validation report	CSAS5/KENO V.a (also KENO-VI with ENDF/B-VII.1 CE library)	HEU-MET-FAST	15, 16, 17, 18, 19, 20, 21, 25, 30, 38, 40, <mark>52</mark> , 65	19/23 ^a
		HEU-SOL-THERM	1, 13, 14, 16, 28, 29, 30	52
		IEU-MET-FAST	2, 3, 4, 5, 6, 7, 8, 9	8/11 ^a
		LEU-COMP-THERM	1, 2, <mark>8</mark> , 10, 17, 42, 50, <mark>78, 80</mark>	140
 Cases in red are new since ICNC 2015 paper 		LEU-SOL-THERM	2, 3, 4	19
		MIX-MET-FAST	5, 6	2
		MIX-COMP-THERM	1, 2, 4	21
		MIX-SOL-THERM	2,7	10
		PU-MET-FAST	1, 2, 5, 6, 8, 10, 18, 22, 23, 24, <mark>25</mark> , <mark>26</mark>	12
		PU-SOL-THERM	1, 2, 3, 4, 5, 6, 7, 11, 20	81
 561 cases with KENO V.a 		U233-COMP-THERM	1	3
		U233-MET-FAST	1, 2, 3, 4, 5, 6	10
		U233-SOL-INTER	1	29
		U233-SOL-MIXED	1, 2	8
 57 cases with		U233-SOL-THERM	1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 15, 16, 17	140
	CSAS6/KENO-VI	HEU-MET-FAST	5, 8, 9, 10, 11, 13, 24, 80, <mark>86, 92, 93, 94</mark>	27
		IEU-MET-FAST	19	2
-		MIX-COMP-THERM	8	28

^aThe larger number includes simplified cases that are duplicate cases for which detailed models are also available in the library.

5

Results

- Average calculated-to-expected ratio (C/E) determined for each category of experiments
 - Uncertainty in C/E accounts for uncertainty in expected $k_{\rm eff}$ value and computational uncertainty
 - Experimental uncertainty >> computational uncertainty, dominates C/E uncertainty
- Results compared
 - Among ENDF/B-VII.1 libraries,
 - Between ENDF/B-VII.0 and respective ENDF/B-VII.1 libraries,
 - C/E with EALF, and
 - C/E with experimental and data uncertainty

Average C/E difference from unity (bias) – KENO V.a

 USI and USM results are consistently poor for all libraries (intermediate and mixed energy)

CAK RIDGE

KENO V.a HST systems

 Comparing results for 56-group, 252group, 200-group, and continuous energy libraries based on ENDF/B-VII.1

Solutional Laboratory

KENO V.a HST systems

- Comparing results for ENDF/B-VII.0 libraries and related ENDF/B-VII.1 libraries
 - For more information on HST-014 and -016 outliers, see Marshall's paper on Gadolinium bias from 2018 Summer ANS Meeting

KENO V.a HST systems

10

- C/E values as a function of EALF
 - Only for ENDF/B-VII.1 252group and continuous energy libraries
- No clear evidence of trends seen on any individual category of experiments

Average C/E difference from unity (bias) – KENO-VI

CAK RIDGE

National Laboratory

11

 Biases in KENO-VI appear to be generally slightly larger than in KENO V.a (not considering USI and USM systems)

 Result of more complex geometries?

KENO V.a and KENO-VI comparison

- Different biases for KENO V.a and KENO-VI for same experiment categories, but with different experiments
- All KENO V.a experiments converted to KENO-VI models using c5toc6 utility
- Only run/compared with ENDF/B-VII.1 continuous energy library
- Same model-to-model comparison
- 94.6% of cases are within 2 sigma
- Monte Carlo uncertainty ranges between ~0.00006 ~0.00049

Differences (KENO-VI – KENO V.a)

 Histogram of all individual case differences with overlay of an imposed normal distribution with the same mean and standard deviation

Conclusions

- Code bias for a wide range of systems is fairly small
 - Less than 2.2% when considering all of the cases in all of the categories
 - For KENO V.a, bias is less than 0.92% when removing the USI and USM systems from consideration and less than 0.5% for almost all of the categories
 - For KENO-VI, bias is less than 0.9%
- Data can be used to identify potential discrepancies which may indicate poor experiment descriptions, disagreements between multigroup and continuous energy libraries/treatments, and/or possible errors in cross section libraries
- Evidence that KENO V.a and KENO-VI calculate equivalent $k_{\rm eff}$ values for identical systems

Acknowledgment

• Sincere thanks to the US Nuclear Criticality Safety Program (NCSP) for sponsoring this work and its presentation.

