Application of Sampler to the UAM Benchmark

ORNL

W. A. Wieselquist

M. L. Williams

M. A. Jessee

University of Michigan

H. Zhou

A. Ward

T. Downar

ORNL is managed by UT-Battelle for the US Department of Energy

LWR Uncertainty Analysis in Modeling (UAM) OECD/NEA Benchmark

- Purpose: apply UQ methods to reactor physics problems
 - Pin, Assembly, Core
 - With/without depletion
 - PWR, BWR, VVER
- <u>https://www.oecd-nea.org/science/wprs/egrsltb/UAM/</u>
- First meeting in 2005

Phases

Phase I (Neutronics Phase)

- Exercise I-1: Derivation of the multi-group microscopic cross-section libraries (nuclear data and covariance data, selection of multi-group structure, etc.).
- Exercise I-2: Derivation of the few-group macroscopic cross-section libraries (energy collapsing, spatial homogenisation of cross-sections and covariance data, etc.).
- Exercise I-3: Criticality (steady state) stand-alone neutronics calculations with confidence bounds (keff calculations, diffusion approximation, etc.).

Phase II (Core Phase)

- Exercise II-1: Fuel thermal properties relevant for transient performance.
- Exercise II-2: Neutron kinetics stand-alone performance (kinetics data, space-time dependence treatment, etc.).
- Exercise II-3: Thermal-hydraulic fuel bundle performance.

Phase III (System Phase)

- Exercise III-1: Coupled neutronics/thermal-hydraulics core performance (coupled steady state, coupled depletion, and coupled core transient with boundary conditions)
- Exercise III-2: Thermal-hydraulics system performance
- Exercise III-3: Coupled neutronics kinetics thermal-hydraulic core/thermal-hydraulic system performance

https://www.oecd-nea.org/science/wprs/egrsltb/UAM/

NOTE: For the core and systems applications three main LWRs types are selected, based on previous benchmark experiences and available data: BWR (Peach Bottom-2),PWR TMI and VVER-1000 (Kozloduy-6, Kalinin-3).

ORNL Participation in Phases

• Phase I (Neutronics Phase)

- Exercise I-1: Derivation of the multi-group microscopic cross-section libraries (nuclear data and covariance data, selection of multi-group structure, etc.).
- Exercise I-2: Derivation of the few-group macroscopic cross-section libraries (energy collapsing, spatial homogenisation of cross-sections and covariance data, etc.).
- Exercise I-3: Criticality (steady state) stand-alone neutronics calculations with confidence bounds (keff calculations, diffusion approximation, etc.).
- Phase II (Core Phase)
 - Exercise II-1: Fuel thermal properties relevant for transient performance.
 - Exercise II-2: Neutron kinetics stand-alone performance (kinetics data, space-time dependence treatment, etc.).
 - Exercise II-3: Thermal-hydraulic fuel bundle performance.

• Phase III (System Phase)

- Exercise III-1: Coupled neutronics/thermal-hydraulics core performance (coupled steady state, coupled depletion, and coupled core transient with boundary conditions)
- Exercise III-2: Thermal-hydraulics system performance
- Exercise III-3: Coupled neutronics kinetics thermal-hydraulic core/thermal-hydraulic system performance

Selected Results

• Full-core UQ with Polaris+PARCS (collaboration with Univ. of Michigan)

0.89± 1.3681%	0.84± 1.3991%	0.681± 1.0523%					
0.902± 0.4264%	1.115± 0.7234%	0.801± 0.5889%	0.942± 1.2776%	0.757± 2.0515%			
0.982± 0.8295%	0.979± 0.4983%	1.165± 0.31%	1.112± 1.1698%	1.509± 2.7164%	1.258± 3.0202%		
0.843±	1.086±	1.512±	1.398±	1.295±	1.509±	0.757±	
1.9418%	1.0843%	0.257%	0.6856%	1.6478%	2.7166%	2.0515%	
0.835±	0.848±	1.129±	1.126±	1.398±	1.112±	0.942±	
2.9384%	2.3588%	1.1473%	0.4431%	0.6853%	1.1697%	1.2771%	
0.666±	0.763±	0.822±	1.129±	1.512±	1.165±	0.801±	0.681:
4.1967%	3.6741%	2.6871%	1.1473%	0.2568%	0.3098%	0.5889%	1.0528
0.623±	0.611±	0.763±	0.848±	1.086±	0.979±	1.115±	0.84±
5.1571%	4.7987%	3.6741%	2.3588%	1.0843%	0.4982%	0.7233%	1.3999
0.501±	0.623±	0.666±	0.835±	0.843±	0.982±	0.902±	0.89±
5.7349%	5.1572%	4.1967%	2.9383%	1.9418%	0.8295%	0.4264%	1.3683

 Exercise I-b simple depletion calculation to test new fission yield uncertainty.

5 2017 SCALE Users Group Meeting

Full-core UQ with Polaris+PARCS

Overview

Uncertainty

- eigenvalue
- radial power factor
- nodal power factor

Compared

- 44-group ENDF/B-VII.0
- 56-group ENDF/B-VII.1

Heavily-borated HFP

 Q: Why is uncertainty lower at 2600 ppm?
 A: Because location of maximum changes.

Case	k _{eff}	Maximum Nodal Power	Maximum Radial Power	
1900 ppm, E7.0 (44g)	1.0481 ± 0.45%	2.32 ± 2.05%	1.567 ± 2.7%	
1900 ppm, E7.1 (56g)	1.0482 ± 0.51%	2.31 ± 2.23%	1.566 ± 3.0%	
2600 ppm, E7.0 (44g)	1.0064 ± 0.45%	2.23 ± 0.65%	1.512 ± 0.26%	
2600 ppm, E7.1 (56g)	1.0064 ± 0.52%	2.23 ± 0.84%	1.512 ± 0.25%	

Exercise I-3 TMI-1 (E7.0)

1900 ppm

8 2017 SCALE Users Group Meeting

2600 ppm

Maximum Nodal Power Histogram (500 samples)

Robust summary statistics: quantiles

Quantiles of Maximum Nodal Power (500 samples)

 $-\sigma$ / nominal /+ σ - green REMARKS 1) If nodal power calculation

- was "linear", then blue and green 50% line would be the same.
- If nodal powers were normally distributed, 17 and -std. dev. and 83 and + std. dev. would be the same.

Fission Yield Uncertainty

Fission Yield Uncertainty

- Developed extensive new fission yield uncertainty data
- All fissionable actinides at all energies will have *correlated* yield uncertainty in 6.3!

A black '-' indicates that nominal data for fission at that energy is not available in ENDF/B-VII. A red 'x' marks new uncertainty data that will be available in SCALE 6.3 and a black 'o' marks old data available in SCALE 6.2 and updated in SCALE 6.3.

 $-m^{2}/2$

				npz30	-	X	-
				pu238	-	Х	-
nuclide	fast	intermediate	thermal	pu239	0	0	0
th227	-	-	Х	pu240	x	x	X
th229	-	-	X				
th232	x	-	-	pu242	x	x	X
pa231	-	x	-	am241	-	х	X
u232	-	-	X	am242	-	-	X
u233	-	x	Х	am243	-	x	-
u234	-	x	X	cm242	-	x	-
u235	О	0	0	cm243	-	Х	Х
u236	x	x	-	cm244	-	х	-
u238	О	0	-	cm245	-	_	x
np237	-	-	Х	cm246	-	x	-
np238	-	x	-	cm247	-	-	-
pu238	-	x	-	cm248	-	x	-
pu239	0	0	0	cf249	-	-	x
pu240	X	x	X	cf251	-	<u>-</u>	x
pu241	-	x	x	es254			x
pu242	X	Х	X				
am241	-	X	X			* OAK	RIDCE
am242	-	-	X			National	Laboratory

u238

np237

nn720

0

0

Х

Exercise I-B pincell depletion case

simple PWR pincell that is depleted from beginning-of-life (BOL) to end-of-life (EOL) at constant power for a total discharge burnup of 60 GWD/MTIHM

Uncertainty only due to fission yield (all isotopes)

- The uncertainty is very low for most isotopes, in the 1% to 3% range.
- The most notable exceptions are
 - ¹⁰⁹Ag with ~15% uncertainty and
 - 160 Gd with ~10% uncertainty.

Uncertainty only due to fission yield (only new isotopes)

- Scale decreased two orders of magnitude from 16% to 0.16%!
- Maximum of only 0.16% for ¹⁰⁹Ag
- CONCLUSION: New data does not impact LWR UO2 depletion uncertainty.

Conclusions

- LWR UAM Benchmark has provided a testbed for SCALE/Sampler applied to reactor physics problems
 - Nodal power uncertainty study emphasizes need for quantiles (or something more complex than standard deviation) to represent complex uncertainty
 - Fission yield uncertainty test verifies that LWR uncertainty is not impacted by new uncertainties (for SCALE 6.3)
- Rise of the sampling-based UQ methods
 - Need to be able to handle all types of uncertainty: nuclear data, manufacturing uncertainty, etc.
 - Methodology applicable to coupled, time-dependent systems, essentially "black-box"
 - UQ (not SA) is primary focus

Future Work applicable to UAM

- Kinetics Uncertainty UQ
 - Necessary for Phase III kinetics analysis
 - Collaboration with Tomasz Kozlowski (Prof. U. Illinois) and Majdi Radaideh (PhD candidate)
- Development of 33-group fast reactor data library
 - To participate in SFR UAM (just starting)
- Perturbed nuclear data as responses

