Implementation of Resonance Parameter Sensitivity Coefficients Calculation in CE TSUNAMI-3D

# Vladimir Sobes, Chris Perfetti (ORNL) Abdulla Alhajri (MIT)



ORNL is managed by UT-Battelle for the US Department of Energy

# **Project History**

- V. Sobes: PhD dissertation (2013) at MIT developed coupling capability for resonance parameter adjustment based on integral experiments
- Production level code SAMINT, released with SAMMY8.1 nuclear data evaluation code
- Abdulla Alhajri, MIT, PhD candidate summer project with V. Sobes and C. Perfetti at ORNL: Implementation of Resonance Parameter Sensitivity Coefficients Calculation in CE TSUNAMI-3D





# **Project History (continued)**

- V. Sobes: PhD dissertation (2013) at MIT developed coupling capability for resonance parameter adjustment based on integral experiments
- Production level code SAMINT, released with SAMMY8.1 nuclear data evaluation code
- Abdulla Alhajri, MIT, PhD candidate summer project with V. Sobes and C. Perfetti at ORNL: Implementation of Resonance Parameter Sensitivity Coefficients Calculation in CE TSUNAMI-3D





# **Project History (continued)**

- V. Sobes: PhD dissertation (2013) at MIT developed coupling capability for resonance parameter adjustment based on integral experiments
- Production level code SAMINT, released with SAMMY8.1 nuclear data evaluation code
- Abdulla Alhajri, MIT, PhD candidate summer project with V. Sobes and C. Perfetti at ORNL: Implementation of Resonance Parameter Sensitivity Coefficients Calculation in CE TSUNAMI-3D





- Calculation of sensitivity coefficients in the resonance region requires many energy bins to resolve individual resonances
- For most isotopes, all of the reaction cross sections in the resonance region are defined by resonance parameters
- For SAMINT, it is necessary to generate k<sub>eff</sub> sensitivities on a dense energy grid and then post-process to get resonance parameter sensitivities
- Instead of *post-processing*, we implement resonance parameter sensitivity calculations *on the fly*



- Calculation of sensitivity coefficients in the resonance region requires many energy bins to resolve individual resonances
- For most isotopes, all of the reaction cross sections in the resonance region are defined by resonance parameters
- For SAMINT, it is necessary to generate k<sub>eff</sub> sensitivities on a dense energy grid and then post-process to get resonance parameter sensitivities
- Instead of *post-processing*, we implement resonance parameter sensitivity calculations *on the fly*



- Calculation of sensitivity coefficients in the resonance region requires many energy bins to *resolve* individual resonances
- For most isotopes, all of the reaction cross sections in the resonance region are defined by resonance parameters
- For SAMINT, it is necessary to generate k<sub>eff</sub> sensitivities on a dense energy grid and then post-process to get resonance parameter sensitivities
- Instead of *post-processing*, we implement resonance parameter sensitivity calculations *on the fly*



- Calculation of sensitivity coefficients in the resonance region requires many energy bins to *resolve* individual resonances
- For most isotopes, all of the reaction cross sections in the resonance region are defined by resonance parameters
- For SAMINT, it is necessary to generate k<sub>eff</sub> sensitivities on a dense energy grid and then post-process to get resonance parameter sensitivities
- Instead of *post-processing*, we implement resonance parameter sensitivity calculations on the fly



**Cross Section Sensitivity in CE TSUNAMI-3D** 





**Resonance Parameters Sensitivities in CE TSUNAMI-3D** 





**Resonance Parameters Sensitivities in CE TSUNAMI-3D (continued)** 



CAK RIDGE

## Advantages of On-the-Fly Calculation: Better Physics, Less Memory

#### **Resonance Parameter Sensitivity Coefficients in TSUNAMI**

- Continuous energy physics
- Calculate resonance parameter derivative on the fly
- Constant memory requirement: number of resonance parameters

## **SAMINT** Implementation

- Need an ultra-tight grid in energy
- Precompute resonance parameter derivatives and save: costly for multiple isotopes and reactions
- Memory and runtime change with fidelity, number of reactions, and isotopes



## **Direct Perturbation Validation**

#### **Infinite Homogeneous System**









## **Compute Resonance Parameter Sensitivities for Unobtainium**

| Resonance<br>Parameter | Value [eV] | $\frac{\partial k  /  k}{\partial \Gamma  /  \Gamma}$ | Uncertainty |
|------------------------|------------|-------------------------------------------------------|-------------|
| $E_1$                  | 100        | 0.034                                                 | 0.000013    |
| $\Gamma^1_n$           | 10         | -0.033                                                | 0.000018    |
| $\Gamma_{\gamma}^{1}$  | 10         | -0.033                                                | 0.000041    |
| $E_2$                  | 1000       | 0.129                                                 | 0.000233    |
| $\Gamma_n^2$           | 100        | -0.062                                                | 0.000019    |
| $\Gamma_{\gamma}^2$    | 100        | -0.062                                                | 0.000045    |
| $E_3$                  | 10000      | 0.093                                                 | 0.000192    |
| $\Gamma_n^3$           | 1000       | -0.031                                                | 0.000013    |
| $\Gamma_{\gamma}^3$    | 1000       | -0.031                                                | 0.000026    |



## **Direct Perturbation Validation**





#### **Compute Resonance Parameter Sensitivities for Unobtainium** (continued)

| Resonance<br>Parameter | Value [eV] | $\frac{\partial k  /  k}{\partial \Gamma  /  \Gamma}$ | Uncertainty |
|------------------------|------------|-------------------------------------------------------|-------------|
| $E_1$                  | 100        | 0.034                                                 | 0.000013    |
| $\Gamma^1_n$           | 10         | -0.033                                                | 0.000018    |
| $\Gamma_\gamma^1$      | 10         | -0.033                                                | 0.000041    |
| $E_2$                  | 1000       | 0.129                                                 | 0.000233    |
| $\Gamma_n^2$           | 100        | -0.062                                                | 0.000019    |
| $\Gamma_{\gamma}^2$    | 100        | -0.062                                                | 0.000045    |
| $E_{3}$                | 10000      | 0.093                                                 | 0.000192    |
| $\Gamma_n^3$           | 1000       | -0.031                                                | 0.000013    |
| $\Gamma_{\gamma}^3$    | 1000       | -0.031                                                | 0.000026    |



## **Direct Perturbation Validation (continued)**





## Future work (MIT PhD Thesis)

- 1. Full implementation in CE TSUNAMI-3D
- 2. Investigate run time reduction aspirations due to improved Monte Carlo statistics
- 3. Implement resonance parameter sensitivities through angular distributions
- 4. Pole cross section formalism implementation

