

Uncertainty analysis on LWR and HTGR neutronics modeling using SCALE tools at NCSU

Jason Hou

Department of Nuclear Engineering North Carolina State University

> SCALE Users' Group Workshop September 27, 2017 Oak Ridge National Laboratory

Main contributors of results presented here

- North Carolina State University
 - Kaiyue Zeng (PhD student)
 - Jason Hou
 - Kostadin Ivanov
- Tsinghua University
 - Lidong Wang (PhD student)
 - Fu Li
- Oak Ridge National Laboratory
 - Matthew Jessee

Reactor Uncertainty Analysis in Modeling (UAM) benchmarks

- Main objectives
 - The chain of uncertainty propagation from basic data, and engineering uncertainties, across different scales (multi-scale), and physics phenomena (multi-physics) to be tested on a number of benchmark exercises for which experimental data is available and for which the power plant details have been released
- The Reactor Dynamics and Fuel Modeling Group (RDFMG) at NCSU has been working on the following Uncertainty Analysis in Modeling (UAM) benchmarks
 - NEA/OECD Light Water Reactor (LWR) UAM
 - IAEA CRP High Temperature Gas-cooled Reactor (HTGR) UAM
 - NEA/OECD Sodium-cooled Fast Reactor (LWR) UAM
- Various modules from different versions of SCALE package have been extensively utilized in support of benchmark specification and calculations
 - Neutronics modeling
 - Sensitivity and uncertainty (S/U) analysis

NEA/OECD LWR UAM: TMI-1

Kaiyue Zeng, Jason Hou, Kostadin Ivanov

North Carolina State University

Matthew A. Jessee

Oak Ridge National Laboratory

R	4.85 4Gd	4.95 8Gd	4.85 4Gd	A B C	A – Fue B – Gd C – Cor	l enrichmer and BP pin ttrol rod typ	nt, unit: wt. configurati e and group	% on p number
Р	4.85 4Gd CR(6)	5.00 8Gd	4.40 CR(1)	5.00 8Gd	4.95 4Gd+BP			
0	5.00 4Gd+BP	5.00 4Gd CR(5)	5.00 4Gd+BP	4.95 4Gd CR(3)	5.00	5.00 4Gd		
N	4.40 CR(7)	4.95 4Gd+BP	4.95 4Gd APSR(8)	4.95 BP	5.00 4Gd CR(7)	5.00	4.95 4Gd+BP	
М	4.95 4Gd+BP	4.85 4Gd CR(4)	4.95 4Gd+BP	4.40 CR(5)	4.95 BP	4.95 4Gd CR(3)	5.00 8Gd	
L	5.00 4Gd CR(2)	4.95 4Gd+BP	4.95 4Gd CR(6)	4.95 4Gd+BP	4.95 4Gd APSR(8)	5.00 4Gd+BP	4.40 CR(1)	4.85 4Gd
K	4.95 4Gd+BP	4.95 4GD CR(2)	4.95 4Gd+BP	4.85 4Gd CR(4)	4.95 4Gd+BP	5.00 4Gd CR(5)	5.00 8Gd	4.95 8Gd
Н	4.00 CR(7)	4.95 4Gd+BP	5.00 4Gd CR(2)	4.95 4Gd+BP	4.40 CR(7)	5.00 4Gd+BP	4.85 4Gd CR(6)	4.85 4Gd
	8	9	10	11	12	13	14	15

Uncertainty Analysis in LWR Modeling

- Objective
 - The work is intended to quantify the uncertainty from nuclear data in the simulation of TMI-1 test cases within the LWR-UAM benchmark framework.

Exercises

- Phase I (Neutronics Phase)
 - Exercise I-3: "Core Physics" focused on the core steady-state stand-alone neutronics calculations and their uncertainties.
- Phase III (System Phase)
 - Exercise III-1: "Coupled Core-System" -Coupled neutronics kinetics thermalhydraulic core/thermal-hydraulic system performance.

PWR numerical cases based on TMI-1 core design

Parameter								V	alue	e		Ban	k	Ν	o. re	ods	Purpose									
lumber of f	fuel	asse	mbl	ies				17	77			1		8			Safety									
umber of I	refle	ctor	asse	em	blie	s		64	1		:	2		8			Safety									
uel assem	bly p	bitch	(m	m)				2	18.1	10	;	3		8			Safety									
Gap betwee	en fu	el a	sser	nbl	ies	(mr	m)	1.	702	2		4		8			Safety									
Active core	leng	jth (r	nm)					3	571	.24	ł	5		12	2		Regulating			8	8 9	8 9 10	8 9 10 11	8 9 10 11 12	8 9 10 11 12 13	8 9 10 11 12 13 14
otal core l	engt	h (m	m)					4(007	.42		6		8			Regulating			4.00	4 00 4 95					
												7		9			Regulating	Н	[4.00	4.00 4.95 4Gd+BP	4.00 4.95 5.00 4Gd+BP 4Gd	4.95 5.00 4.95 4Gd+BP 4Gd 4Gd+BP	4.00 4.93 5.00 4.93 4.40 4Gd+BP 4Gd 4Gd+BP	4.00 4.95 5.00 4.95 4.40 5.00 4.60 4Gd+BP 4Gd 4Gd+BP 4Gd+BP	4.00 4.93 5.00 4.95 4.40 5.00 4.85 4.60 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61
												8		8			APSR			CR(/)	CR(7)	CR(7) CR(2)	CR(7) CR(2)	CR(7) CR(2) CR(7)	CR(7) CR(2) CR(7)	CR(7) CR(2) CR(7) CR(6)
																		К			4.95 4GD CR(2)	4.95 4.95 4GD 4Gd+BP CR(2)	$\begin{array}{c ccccc} 4.95 & 4.95 & 4.85 \\ 4GD & 4Gd+BP & 4Gd \\ CR(2) & & CR(4) \end{array}$	4.95 4.95 4.85 4.95 4GD 4Gd+BP 4Gd 4Gd+BP CR(2) CR(4) CR(4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.95 4.95 4.85 4.95 5.00 5.00 4GD 4Gd+BP 4Gd 4Gd+BP 4Gd 8Gd CR(2) CR(4) CR(5)
												1						L				4.95 4Gd	4.95 4.95 4Gd 4Gd+BP	4.95 4.95 4.95 4Gd 4Gd+BP 4Gd	4.95 4.95 4.95 5.00 4Gd 4Gd+BP 4Gd 4Gd+BP	4.95 4.95 4.95 5.00 4.40 4Gd 4Gd+BP 4Gd 4Gd+BP
					1		6		1	Т												CR(6)	CR(6)	CR(6) APSR(8)	CR(6) APSR(8)	CR(6) APSR(8) CR(1)
				3		5		5	3	3						Refle	ector	М					4.40	4.40 4.95 BP	4.40 4.95 4.95 BP 4Gd	4.40 4.95 4.95 5.00 BP 4Gd 8Gd
_			7		8		7		8	7						Fuel	assembly						CR(5)	CR(5)	CR(5) CR(3)	CR(5) CR(3)
_			3	5	-	4	_	4	5	5	3			_			assombly	N						5.00 4Gd	5.00 5.00 4Gd	5.00 5.00 4.95 4Gd 4Gd+BP
-		1	5	4	6	2	2	2	6	8	5	1		_	Х	with	control rod	14				$ \land $	\wedge	CR(7)	CR(7)	CR(7)
		6	7	-	2	2		2	2	7	0	6				Ejec	ted rod	0							5.00	5.00
			5	4		2		2	4		5							0							400	400
		1	8		6		2		6	8		1														
			3	5		4		4	5	;	3							Р								
			7		8		7		8	7]	A B	A C-C B B-C	$\begin{array}{cc} A & C = Control rod \\ B & B = Gd \text{ and } BP \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 C – Control rod type and group number B – Gd and BP pin configuration 	AC - Control rod type and group numberBB - Gd and BP pin configuration	 B – Gd and BP pin configuration
				3		5	0	5	3	3								R		С	C A-F	C A – Fuel enrichr	C A – Fuel enrichment, unit: v	C A – Fuel enrichment, unit: wt.%	C A – Fuel enrichment, unit: wt.%	C A – Fuel enrichment, unit: wt.%
					1		6		1				N													

Generation of cross section sets for Exercise I-3

- Exercise I-3
 - Standalone neutronics simulation
 - Fresh fuel
 - Hot zero power (HZP) steady-state
 - All rods inserted (ARI)
- 1000 sets of perturbed cross section
 - 56g-ENDF/B VII.1 library
 - 56g-ENDF/B v7.1 covariance data library
 - Source of uncertainty: cross sections
- 14 unique lattice models
 - 8 fuel lattices
 - 3 BP-loaded lattices
 - 3 reflector models

	8	9	10	11	12	13	14	15
Н	4.00 CR(7)	4.95 4Gd+BP	5.00 4Gd CR(2)	4.95 4Gd+BP	4.40 CR(7)	5.00 4Gd+BP	4.85 4Gd CR(6)	4.85 4Gd
K		4.95 4GD CR(2)	4.95 4Gd+BP	4.85 4Gd CR(4)	4.95 4Gd+BP	5.00 4Gd CR(5)	5.00 8Gd	4.95 8Gd
L			4.95 4Gd CR(6)	4.95 4Gd+BP	4.95 4Gd APSR(8)	5.00 4Gd+BP	4.40 CR(1)	4.85 4Gd
М				4.40 CR(5)	4.95 BP	4.95 4Gd CR(3)	5.00 8Gd	
N					5.00 4Gd CR(7)	5.00	4.95 4Gd+BP	
0						5.00 4Gd		
р							•	

А C - Control rod type and group number

В B - Gd and BP pin configuration

С A - Fuel enrichment, unit: wt.%

Р

R

Stochastic sampling using Sampler/Polaris and PARCS

- SCALE 6.2 Sampler/Polaris
 - Sampler: General stochastic sampling method for uncertainty propagation
 - Polaris: new LWR lattice physics transport code
- GenPMAXS: Conversion of format from txtfile16 to PMAXS
- PARCS: Nodal core simulator

Exercise I-3: lattice calculation

 For all fuel assembly lattices, the uncertainty of kinf is ~0.55% or ~600 pcm for fresh fuel.

9

Exercise I-3: running mean k-eff

- 2-group cross sections generated for 1 nominal + 1000 samples
- Core condition: fresh, HZP, ARI
- Running mean and uncertainty do not change much when N > 400
- The standard deviation of k-eff with 1000 and 150 samples are both ~0.51%

Confidence intervals for *k*-eff population standard deviation

- But a larger sample size will yield narrower confident intervals*
- A sample size of 100 yields >10% relative confidence interval
- It is not acceptable if N = 100 is used to investigate some effect that has < 10% impact on sample standard deviation

Evolution of 95% relative confidence intervals with sample size

Relative confidence interval for confidence level of 95%

Sample size N	lower limit	upper limit
100	87.8%	116.2%
500	94.2%	106.6%
1000	95.8%	104.6%

How to choose sample size N?

- Depends on users' need
 - CL/confidence interval
 - Convergence of std
- Depends on response of interest
- Is it possible to let Sampler choose N?

* F. Bostelmann et al., "Some comments on the GRS MHTGR results of Phase I,", IAEA CRP on HTGR UAM: RCM-4, Vienna, May 22-25, 2017

Exercise I-3: axial power profile

Exercise I-3: radial power profile

Radial peaking factor $F_{\rm R}$ 0.756 0.698 0495 Nominal: 1.683 ±1.42% ±1.41% ±0.99% Sampled: 1.683 ±0.55% 0.865 1.111 0.730 0.795 0.542 ±0.46% ±0.85% ±0.54% ±1.28% ±2.01% **Fixed peaking location** 1.412 1.043 1.007 1.211 1.073 Fuel enrichment 4.95% ±0.33% ±0.53% ±2.72% ±0.62% ±1.21% 1.202 1.683 1.454 1.246 1.412 0.542 Control rod locations ±0.74% ±0.55% ±0.87% ±1.65% ±2.72% ±2.01% 1.266 1.454 1.073 0.795 1.184 ±0.80% ±0.27% ±0.87% ±1.21% ±1.28% 0.768 0.896s 1.266 1.683 1.211 0.730 0.495 ±3.86% ±3.30% ±0.80% ±0.55% ±0.53% ±0.54% ±0.99% 0.752 0.698 0.714 1.202 1.007 1.111 ±4.72% ±3.30% ±0.74% ±0.85% ±1.41% ±4.43% +±0.33% Large uncertainty due to: 0.589 0.752 0.865 0.768 1.043 0.756 low power, ±5.34% ±4.72% ±3.86% ±0.62% ±0.46% ±1.42% ≁ normalization process

Ex III-1: core condition and exposure map available

Currently only focusing on steady state neutronics calculation

HFP condition

- Reactor power = 100% rated power (2771.9 MW);
- Average fuel temperature = 921 K, inlet moderator temperature = 562.67 K, outlet moderator temperature = 592.7 K;
- Control rod groups 1–6 completely withdrawn, group 7 completely inserted and group 8 (APSR) 53.8% inserted;
- Core inlet pressure = 15.36 MPa;
- Core flow rate = 16546.04 kg/s.

• HZP condition

- Fuel temperature = 551 K, moderator temperature = 551 K and moderator density = 766 kg/m³;
- Control rod groups 1–4 completely withdrawn, groups 5–7 completely inserted and group 8 (APSR) 70% inserted.

	8	9	10	11	12	13	14	15
н	1	2	3	4	5	6	7	8
	52.863	30.192	56.246	30.852	49.532	28.115	53,861	55.787
К		9	10	11	12	13	14	15
		57.945	30.798	55.427	29.834	53.954	25.555	49.166
L	·		16	17	18	19	20	21
			57.569	30.218	54.398	27.862	23.297	47.300
М				22	23	24	25	
				49.712	28.848	52.846	40.937	
N					26	27	28	
					48.746	23.857	41,453	
0						29	Α	
						37.343	В	

P

EOC assembly burnup map

Parameterized cross section generation: range of state variables

- Same approach as in Ex I-3: Polaris/Sampler
- State variables: fuel temperature, coolant density, and control rod insertion.
- Boron concentration fixed at 1935 ppm and 5 ppm for BOC and EOC, respectively.

State variables	State points calculated
Fuel temperature (K)	551, 921, 1780, 2400, 3000
Boron Concentration (ppm)	5, 1935
Coolant density (g/cc)	0.660, 0.702, 0.733, 0.770
Control rod insertion	Yes, no
APSR insertion	Yes, no

For non-APSR assemblies: 5×4×2=40 state points for both BOC and EOC state

For APSR lattice: 5x4x4=80 state points for both BOC and EOC state, respectively.

Exercise III-1: keff, uncertainties, and normality tests

State	Nominal <i>k</i> _{eff}	Sample mean $k_{ m eff}$ ± rel. σ	Anderson-Darling normality test
BOC HZP	1.01979	1.01986 ± 0.44%	Pass
EOC HZP	1.04263	1.04276 ± 0.45%	Pass
BOC HFP	1.01125	1.01136 ± 0.46%	Pass
EOC HFP	1.02885	1.02902 ± 0.47%	Pass

- The 150 core keff's could be regarded as normally distributed.
- The uncertainties for keff is 0.44-0.47%.
- They are smaller than the uncertainty of Exercise I-3 fresh core keff (0.51%), because there
 are more heavy mental in fresh core and only the perturbation in cross section is taken into
 account at this stage.
- For *N* = 150, rel. confidence interval for CL of 95% is [-10.18%, 12.80%]

Exercise III-1: axial power profile at HFP state

350 HFP BOC Nominal *F₇*: 1.406 300 150 sample mean F_{z} location free: $1.408 \pm 0.33\%$ 150 sample mean F_{z} location fix (node 8): $1.406 \pm 0.23\%$ 250 HFP EOC Distance from Bottom / cm Nominal F_: 1.242 150 sample mean F_z location free: $1.243 \pm 0.75\%$ 200 150 sample mean F_{z} location fix (node 7): 1.242±0.77% 43% - node 9 57% - node 8 150 Axial powers peak in bottom half core: 13% - node 8 100 Smaller moderator temperature 54% - node 7 33% - node 6 \rightarrow larger moderator density. 50 Axial power profile is flattened towards EOC. HFP EOC HFP BOC 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6

Axial Power (Planar integrated)

Exercise III-1: radial power distribution at HFP

Uncertainty smaller at EOC due to flattened flux distribution

1.5

0.5

HFP BOC

HFP EOC

0.382

±0.62%

0.871

±0.94%

0.644

±0.40%

1.212

±0.24%

1.108

8,467

±0.79%

0.871

±0.94%

0.919

±0.57%

1.312

0.382

±0.62%

0.671

±0.92%

1.097

0.405

±0.91%

0.496

±0.84%

0.445

±0.47%

0.671

±0.92%

0.919

±0.57%

1.212

±0.24%

1.135

±0.54%

1.418

0.333 ±1.06%	0.401 ±0.78%	0.349 ±0.85%					
0.813 ±0.72%	1.210 ±1.56%	1.188 ±1.87%	0.669 ±0.97%	0.393 ±0.79%			
1.133 ±0.32%	1.142 ±0.47%	1.253 ±0.98%	0.986 ±0.75%	1.095 ±1.49%	0.542 ±1.14%		
0.775	1.216	1.149	1.243	0.801	1.095	0.393	
±1.32%	±0.50%	±0.32%	±0.34%	±0.41%	±1.49%	±0.79%	
1.253	1.197	1.348	1.212	1.243	0.986	0.669	
±1.19%	±1.18%	±0.63%	±0.46%	±0.34%	±0.75%	±0.97%	
1.237	1.348	1.238	1.348	1.149	1.253	1.188	0.349
±1.56%	±1.26%	±1.24%	±0.63%	±0.32%	±0.98%	±1.87%	±0.85%
1.216	1.1 <mark>59</mark>	1.348	1.197	1.216	1.142	1.210	0.401
±1.86%	±1.86%	±1.26%	±1.18%	±0.50%	±0.47%	±1.56%	±0.78%
0.677	1.216	1.237	1.253	0.775	1.133	0.813	0.333
±2.99%	±1.86%	±1.56%	±1.19%	±1.32%	±0.32%	±0.72%	±1.06%

49% M10

51% L9 peaking location

±1.44%	±1.04%	±1.14%	±0.49%	±0.33%	±1.00%	±1.65%
1.323	1.160	1.437	1.168	1.297	1.121	1.218
±1.54%	±1.67%	±1.04%	±1.08%	±0.32%	±0.47%	±1.48%
0.694	1.323	1.208	1.324	0.741	1.248	0.901
±2.70%	±1.54%	±1.44%	±0.99%	±1.24%	±0.49%	±0.81%
1()0%	9				

JU /0 LJ peaking location

0.496

±0.84%

1.218

±1.48%

1.121

±0.47%

1.297

±0.32%

1.168

±1.08%

1.437

0.405

±0.91%

1.097

±1.65%

1.312

±1.00%

1.108

±0.33%

1.418

±0.49%

1.214

0.445

±0.47%

0.901

±0.81%

1.248

±0.48%

0.741

±1.24%

1.324

±0.99%

1.208

20

2

1.5

1

0.5

Exercise III-1: radial power distribution at BOC

HZP BOC

0.207 ±1.03%	0.302 ±1.29%	0.311 ±1.97%						
0.364 ±0.62%	0.956 ±2.45%	1.200 ±3.40%	0.716 ±2.62%	0.473 ±2.95%				
0.765 ±1.16%	0.607 ±0.66%	1.165 ±1.70%	1.054 ±2.17%	1.444 ±4.09%	0.704 ±3.77%			
0.668 ±2.70%	1.137 ±1.37%	1.072 ±0.60%	1.241 ±1.01%	0.839 ±1.92%	1.444 ±4.09%	0.473 ±2.95%		
1.479 ±2.15%	1.343 ±2.25%	1.358 ±1.54%	0.768 ±1.48%	1.241 ±1.01%	1.054 ±2.17%	0.716 ±2.62%		
1.605 ±2.73%	1.702 ±2.34%	1.252 ±2.60%	1.358 ±1.54%	1.072 ±0.60%	1.165 ±1.70%	1.200 ±3.40%	0.311 ±1.97%	
1.682 ±2.93%	1.541 ±3.10%	1.702 ±2.34%	1.343 ±2.25%	1 137 ±1.37%	0.607 ±0.66%	0.956 ±2.45%	0.302 ±1.29%	
0.862 ±4.33%	1.682 ±2.93%	1.605 ±2.73%	1.479 ±2.15%	0.568 ±2.70%	0.765 ±1.16%	0.364 ±0.62%	0.207 ±1.03%	
Con	trol ro	d ba	nk 5	С	ontro	l rod	bank	6

HFP BOC

2	0.333 ±1.06%	0.401 ±0.78%	0.349 ±0.85%							2
	0.813 ±0.72%	1.210 ±1.56%	1.188 ±1.87%	0.669 ±0.97%	0.393 ±0.79%					
1.5	1.133 ±0.32%	1.142 ±0.47%	1.253 ±0.98%	0.986 ±0.75%	1.095 ±1.49%	0.542 ±1.14%				1.5
	0.775 ±1.32%	1.216 ±0.50%	1.149 ±0.32%	1.243 ±0.34%	0.801 ±0.41%	1.095 ±1.49%	0.393 ±0.79%			
1	1.253 ±1.19%	1.197 ±1.18%	1.348 ±0.63%	1.212 ±0.46%	1.243 ±0.34%	0.986 ±0.75%	0.669 ±0.97%			1
	1.237 ±1.56%	1.348 ±1.26%	1.238 ±1.24%	1.348 ±0.63%	1.149 ±0.32%	1.253 ±0.98%	1.188 ±1.87%	0.349 ±0.85%		
0.5	1.216 ±1.86%	1.159 ±1.86%	1.348 ±1.26%	1.197 ±1.18%	1.216 ±0.50%	1.142 ±0.47%	1.210 ±1.56%	0.401 ±0.78%		0.5
0	0.677 ±2.99%	1.216 ±1.86%	1.237 ±1.56%	1.253 ±1.19%	0.775 ±1.32%	1.133 ±0.32%	0.813 ±0.72%	0.333 ±1.06%		0

Summary on LWR UAM activities

- Cross section sets prepared for TMI-1 case in NEMTAB and PMAX format using Polaris/Sampler in SCALE 6.2.1
- Preliminary results obtained for TMI-1 steady-state simulations using statistical sampling method
 - Core k_{eff}, axial power peaking factor and radial power peaking factor are analyzed with associated uncertainties
 - Anderson-Darling normality test performed
- Ongoing work
 - It was reported that pin-by-pin calculation yields a non-normal power peaking factors. In contrast, the nodal solution of the power peaking factors are normally distributed.
 - Continue with depletion and transient (REA) simulations

Capability needed

- Shape function generated by Polaris
- Now available in NEWT output

IAEA CRP on HTGR UAM: PBR-250

Lidong Wang, Fu Li

Institute of Nuclear and New Energy Technology (INET) Tsinghua University, China

Jason Hou, Kostadin Ivanov Department of Nuclear Engineering

North Carolina State University

High Temperature Gas-cooled Reactor (HTGR) Uncertainty Analysis in Modeling (UAM) was initiated in 2012

- Core configurations
 - Prismatic
 - Pebble bed: representative 250 MWth Pebble Bed Reactor design (PBR-250)
- Objectives (following ideas of NEA/OECD UAM on LWRs)
 - To subdivide system into steps
 - To identify inputs, outputs and propagated uncertainties for each step
 - To calculate resulting uncertainty in each step
 - To propagate the results in integral system
- Peculiarities of HTGR
 - Fuel design TRISO
 - Large graphite quantity
 - High temperature
- In the current study, focuses have been placed on
 - Exercise I-1 and I-2
 - HTGR modeling options
 - Nuclear data uncertainty

SCALE modules used in this study

- SCALE versions
 - 6.1, 6.2, 6.2.2
- SCALE modules
 - KENO-VI, TSUNAMI-3D
- SCALE libraries
 - Nuclear data libraries: ENDF/B VII.0, ENDF/B VII.1
 - Covariance libraries: 44groupcov, 56groupcov7.1

Benchmark Phase I: local standalone neutronics simulation

- Exercise I-1
 - single pebble or "cell" calculation
- Model parameters
 - 7g heavy metal per pebble
 - White/reflective boundary

- Exercise I-2
 - core unit or "assembly" calculation
- Packing structure
 - BCC / HCP / "Dummy" Pebble

Exercise	Sub-cases	State	Enrichment	Geometry
Evoroico I 1	a: Fresh fuel	CZP (cold zero power, 293K)	8.9% (4.2%*)	
	b: Batch 113 burned fuel [†]	HFP (hot full power, 900K)		
Exercise	Central	Case neighbors	State	Geometry
Exercise	Central	Case neighbors a: Batch 113 b: Batch 225	State CZP	Geometry

* 4.2% is the fuel enrichment usually used in HTGR criticality in fresh core

[†]Burn-up of this representative fuel sphere is ~63,000 MWd/T

Exercise I-1: single pebble

- Modeling approaches (Ex I-1a only)
 - Various levels of geometry simplification
 - Effect on multiplication factor
- Effect of ND library (Ex I-1a, CZP & HFP state)
- Uncertainty quantification

- Modeling with KENO-VI
 - Explicit model of coated particles (lattice)
 - Homogenized fuel region with
 - DOUBLEHET unit cell
 - Homogenized fuel region with RPT
- Modeling with Serpent-2
 - Randomly distributed particles
 - Code-to-code verification

homogenized RPT* homogenized DOUBLEHET

Effect of modeling approaches on multiplication factors

Ex I-1a, ENDF/B VII.1

		CZP (293K)	HFP (900K)		
	Case	$k_{ m eff}\pm\sigma$	Δ[pcm]	$k_{ m eff}\pm\sigma$	Δ[pcm]	
	KENO-VI CE Lattice	1.57841±0.00019	reference	1.50277±0.00014	reference	
<i>With double</i> neterogeneity reatment	Serpent-2 Lattice	1.57883±0.00010	42	1.50298±0.00010	21	
	Serpent-2 Random	1.57656±0.00010	-185	1.50071±0.00010	-206	
	KENO-VI MG DH	1.57535±0.00015	-306	1.49904±0.00014	-373	
Approximate nomogenization	Serpent-2 HM	1.46188±0.00008	-11,653	1.37548±0.00010	-12,729	
	KENO-VI CE HM	1.46131±0.00014	-57	1.37559±0.00015	11	
	KENO-VI MG HM	1.45914±0.00021	-274	1.37378±0.00025	-170	

- CE Monte Carlo methods produce consistent results using lattice model: $\Delta k < 50$ pcm
- Results associated with random distribution of particles are in between those of lattice and DH models
- CE Lattice model vs. MG DOUBLEHET model: -306 & -373 pcm

Effect of nuclear data libraries (Ex I-1a, 8.9% enrichment)

Multiplication factor

Case	СZР(293К)			HFP(900K)		
	ENDF/B VII.0	ENDF/B VII.1	Δ[pcm]	ENDF/B VII.0	ENDF/B VII.1	Δ[pcm]
KENO-VI CE Lattice	1.58613±0.00019	1.57841±0.00019	772	1.50948±0.00013	1.50277±0.00014	671
Serpent-2 Lattice	1.58580±0.00010	1.57883±0.00010	697	1.50932±0.00010	1.50298±0.00010	634
Serpent-2 Random	1.58379±0.00010	1.57656±0.00010	723	1.50717±0.00010	1.50071±0.00010	646
KENO-VI MG DH	1.58309±0.00016	1.57535±0.00015	774	1.50694±0.00013	1.49904±0.00014	790
Serpent-2 HM	1.46737±0.00008	1.46188±0.00008	549	1.38110±0.00010	1.37548±0.00010	562
KENO-VI CE HM	1.46763±0.00015	1.46131±0.00014	632	1.38176±0.00016	1.37559±0.00015	617
KENO-VI MG HM	1.46589±0.00021	1.45914±0.00021	675	1.37954±0.00020	1.37378±0.00025	576

 500-800 pcm difference was found when comparing the results of ENDF/B VII.0 and ENDF/B VII.1 for all models at both CZP and HFP states.

Nuclear data difference: carbon (n,gamma) reaction

- Relatively large difference between ENDF/B-VII.0 and -VII.1
- Effect on criticality calculation

for a coated particle ~200 pcm for a single pebble ~700 pcm for a core unit ~1100 pcm

Uncertainty quantification (UQ) following sensitivity based approach

- Various options in TSUNAMI-3D were tested
 - MG: the doubly heterogeneous effect cannot be ignored
 - CE-IFP*: huge memory footprint
 - CE-CLUTCH[†]: mesh grid with enough neutron histories is required
 - Convergence of importance function *F**(*r*) should be guaranteed
 - Choice of mesh size and neutron history in each mesh is important but heavily relies on user's experience
 - Sensitivity coefficients obtained from TSUNAMI-3D should always be verified with direct perturbation method (DPM) results.
- Calculations performed for the following
 - MG/CE TSUNAMI-3D (Ex I-1a)
 - CE TSUNAMI-3D (Ex I-1b)
 - Parametric study for CE-CLUTCH
 - Influence of temperature
 - Influence of covariance libraries

* Iterated Fission Probability

[†] Contribution-linked Eigenvalue Sensitivity/Uncertainty Estimation via Tracklength Importance Characterization

MG/CE TSUNAMI-3D calculations (SCALE6.2, Ex I-1a)

- Related issues
 - COV-Lib couldn't be switched to 44groupcov in CE TSUNAMI-3D sequence resolved in SCALE 6.2.2
 - MG mode with Doublehet option succeed, which was unexpected
- Ex I-1a (fresh fuel) CZP state results

TSUNAMI	ND_Lib	COV_Lib	keff	Uncertainty (%k/k)
		44groupcov	1.58309±0.00016	0.455390 ± 0.000040
MG	ENDF/B	56groupcov7.1	1.58309±0.00016	0.497242±0.000016
CE-IFP	VII.0	56groupcov7.1	1.58553±0.00039	0.500800±0.000430
CE-CLUTCH		56groupcov7.1	1.58580 ± 0.00022	0.500440 ± 0.000380
MG		44groupcov	1.57586±0.00015	0.454402±0.000040
	ENDF/B	56groupcov7.1	1.57586±0.00015	0.493352 0.000020
CE-IFP	VII.1	56groupcov7.1	1.57970±0.00040	0.503500 ± 0.000480
CE-CLUTCH		56groupcov7.1	1.57975±0.00014	0.502950 ± 0.000250

Should always use consistent ND and COV libraries: ENDF/B-VII.0+44groupconv; ENDF/B-VII.0+56groupconv7.1 MG TSUNAMI-3D UQ results are smaller than CE TSUNAMI-3D UQ results, as the implicit effect is ignored.

Ex I-1b: Batch-113 burned Fuel (CZP state)

- IFP CE TSUNAMI-3D
 - ~40G memory for CFP (number of latent generation) = 1
 - CFP usually is 5-10
 - Compared with ~9G for fresh fuel (4 isotopes)
 - Not applicable to larger geometry
- CLUTCH CE TSUNAMI-3D

source $T \stackrel{n,2fn}{\frown} T \stackrel{n,fn}{\frown}$
$\bullet \xrightarrow{r_1} \\ \bullet \xrightarrow{r_2} \\ \bullet $
progenitor 1 progenitor 2
original generation
latent generation
asymptotic generation $P_{1,1} \rightarrow P_{2,1} \rightarrow P_{2,2} \rightarrow P_{3,1} \rightarrow P_{3,2}$

TSUNAMI Lib		Temp	Uncertainty (%k/k)	
IFP		202	0.52038±0.00043	
CLUTCH	ENDF/B	293	0.51575±0.00039	
IFP	^v 56groupcov	000	0.51256±0.00044	
CLUTCH		900	0.51834±0.00029	

IFP Scheme

Influence of temperature on uncertainties

 IFP results were collected in test calculations that didn't follow recommended setup

Exercise	TSUNAMI	Lib	Temp	<i>k</i> -eff	Uncertainty (%k/k)
			293K	1.57965±0.00029	0.50130±0.00032
Ex I-1a	IFP		900K	1.50402±0.00030	0.51565±0.00038
			293K	1.57975±0.00014	0.50295±0.00025
	CLUICH	ENDF/B VII.1	900K	1.50337±0.00014	0.51834±0.00029
Ex I-1b	IFP	56groupcov	293K	1.09173±0.00015	0.51575±0.00039
			900K	1.05889±0.00043	0.51472±0.00064
			293K	1.09193±0.00020	0.52038±0.00043
	CLUICH		900K	1.05908±0.00016	0.51258±0.00044

Sensitivity analysis is required to understand the decrease of rel. uncertainty with temperature for burned fuel.

Influence of libraries / covariance (CLUTCH)

- CE TSUNAMI-3D IFP requires large memory
- Only CE TSUNAMI-3D CLUTCH results are available

Exercise	Mat.	Temp. (K)	Lib / Cov	keff	Uncertainty (%k/k)
		293	7.1 / 56	1.57975±0.00014	0.50295 ± 0.00025
	Q 00/		7.0 / 44	1.58689±0.00013	0.45096 ± 0.00031
	0.970	000	7.1 / 56	1.50337±0.00014	0.51834±0.00029
Ev L 1o		900	7.0/44	1.50980 ± 0.00015	0.47267 ± 0.00038
EX I-TA	4.2%	293 4.2% 900	7.1 / 56	1.42819±0.00012	0.55577 ± 0.00033
			7.0/44	1.43954±0.00014	0.51578±0.00047
			7.1 / 56	1.34920±0.00014	0.57858±0.00039
			7.0/44	1.36010 ± 0.00013	0.52876 ± 0.00054
		293	7.1 / 56	1.09193±0.00020	0.52038±0.00043
Ex I-1b	Batch 113		7.0 / 44	1.09700±0.00016	0.55383 ± 0.00050
			7.1 / 56	1.05908±0.00016	0.51258±0.00044
		900	900	7.0/44	1.06354 ± 0.00015

- Impact of nuclear data library
- Spectral effect
- Impact of composition

Top 7 Contributors to *k*_{eff} Uncertainty

- Impact of fuel enrichment
- Results obtained for ENDF/B-VII.1 + 56g cov
- Spectral shift affects contribution to k-eff uncertainty

	8.9%	wt	4.2%wt		
No.	Matrix	Contribution	Matrix	Contribution	
1	U-235 $\bar{\nu}$	3.7866E-01	→ U-235 <i>v</i>	3.8136E-01	
2	U-235 (<i>n</i> ,γ)	2.0919E-01	U-238 (<i>n</i> ,γ)	2.2987E-01	
3	U-238 (<i>n</i> ,γ)	1.6196E-01	U-235 (<i>n</i> , γ)	1.9664E-01	
4	U-235 $(n, f)(n, \gamma)$	1.0949E-01	Graphite (n, γ)	1.7274E-01	
5	Graphite (n, γ)	9.0193E-02	U-235 (<i>n</i> , <i>f</i>)(<i>n</i> , γ)	1.2147E-01	
6	Grphite (n, n)	8.2684E-02	U-235 (<i>n</i> , <i>f</i>)	9.3696E-02	
7	U-235 (<i>n</i> , <i>f</i>)	7.1330E-02	Grphite (n, n)	7.6731E-02	

Exercise I-2: core unit or "assembly" calculation

- Packing study: BCC, HCP, "Dummy" Pebble
- BCC sub-cases
 - Central fuel sphere: Batch 113
 - Neighbors
 - a-Batch 113; b-Batch 225; c-Fresh fuel d-Graphite
 - CZP-293k; HFP-900K
- Three geometries with same pack fraction (61%)
 - BCC structure
 - Cubic boundary, reflective/periodic BC
 - 2 pebbles in total
 - HCP structure
 - Hexagonal prismatic boundary, periodic BC
 - 13 spheres in total
 - Dummy pebble
 - Outer radius is enlarged (3 cm to 3.013 cm)
 - But enclosed by the cubic boundary
 - to satisfy 61% packing fraction

BCC

Dummy pebble

Criticality calculation and UQ results

- Multiplication factor ENDF/B VII.1, CZP, all 4.2% enrichment
 - Impact of geometry is negligible as long as the pack fraction is maintained

Model	BCC	НСР	Dummy pebble
KENO-VI CE Lattice	1.42787±0.00014	1.42811±0.00015	1.42835±0.00014
Serpent-2 Lattice	1.42789±0.00008	1.42810±0.00008	1.42817±0.00008
Serpent-2 Random	1.42639±0.00008	1.42641±0.00008	1.42681±0.00008
KENO-VI MG DH	1.42547±0.00011	1.42540±0.00012	1.42560±0.00011

- UQ using TSUNAMI-3D CLUTCH for BCC sub-cases
 - Central pebble is batch 113 burned fuel sphere

Sub-cases	CZ	ΣP	HFP		
	keff	Uncertainty %	keff	Uncertainty %	
a: batch 113	1.09163±0.00015	0.48780=0.00032	1.05913±0.00014	0.50412±0.00041	
b: batch 225	0.99503±0.00016	0.54570=0.00050	0.98523±0.00014	0.54084 ± 0.00045	
c: fresh fuel	1.35637±0.00017	0.48444±0.00027	1.28407±0.00014	0.48116±0.00032	
d: graphite	1.16663±0.00015	0.54910 0.00035	1.16906±0.00015	0.51635±0.00042	

Absolute uncertainties are similar

Absolute uncertainties larger due to graphite contribution

Summary on HTGR CRP activities

- Exercise I-1 single pebble
 - Study on modeling approaches (only for Ex I-1a)
 - Various levels of geometry simplification
 - Effect on multiplication factor (CZP & HFP state)
 - Effect of ND and COV library (CZP & HFP state)
 - Uncertainty quantification
- Exercise I-2 core unit
 - Packing study
 - Uncertainty quantification
- Ongoing work
 - PBR-250 whole-core model
 - UQ using CE TSUNAMI-3D CLUTCH
 - Not possible without MPI support

Detailed instruction for compiling SCALE with MPI support is needed

Parallel SCALE (with MPI support)

cp script/configure_scale_mpi.sh build/gcc chmod u+x build/gcc/configure_scale_mpi.sh ./configure_scale_mpi.sh ../..

Summary

- NCSU is performing studies on a number of Uncertainty Analysis in Modeling (UAM) benchmarks
 - NEA/OECD Light Water Reactor (LWR) UAM
 - IAEA CRP High Temperature Gas-cooled Reactor (HTGR) UAM
 - NEA/OECD Sodium-cooled Fast Reactor (LWR) UAM
- SCALE package is one of the major computational tools adapted for the benchmark specification and calculations
 - Neutronics modeling
 - Sensitivity and uncertainty (S/U) analysis
 - SCALE 6.2/6.2.1/6.2.2
 - TSUNAMI, Polaris, Sampler, KENO, etc.