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Motivation 

• Why are we using BISON (INL)? 

– More attention to additional physics with MPACT/CTF becoming more mature 

– Provides high-fidelity, finite element-based fuel performance simulations built 
on the MOOSE framework [1,2] 
• Swelling, densification, relocation, gap closure, etc. 

• Provides insights into fuel behavior that VERA-CS does not directly take into account 

– Already being used in several applications within CASL: 
• Tiamat provides fully coupled simulations with MPACT/CTF/BISON [3,4] 

• Is being used to generate more accurate fuel temperatures for VERA-CS 

• Ongoing work to tackle the pellet-clad interaction (PCI) challenge problem 

• The work covered here pertains to streamlining standalone BISON 
usability 

– Generate individual BISON cases for each rod using VERA-CS neutronics/TH 
output 

– Potentially as a screening tool for further analysis 

– This is not considered BISON V&V  
• Merely showing one of the directions being pursued in CASL 
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Generating BISON Inputs 

 

 

• VERA simulations start of an ASCII input file, which is converted to XML 

• The XML2MOOSE preprocessor creates an input for each rod 

– Uses a BISON template as the starting point 

– Updates the values in the template based on the parameters in the 
extended markup language (XML) file 

– Reads the VERA-CS output hierarchical data format (HDF5) file and 
populates input files that BISON can process 

• Normalized Axial Power Distribution 

• Rod Power History 

• Moderator Temperature Distribution  

– Shuffles fuel as appropriate by linking up data 
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Output Data 

• BISON outputs a CSV and an EXODUS file 

• CSV  

– typically Max/Min/Avg quantities of interest 
• Max/Min/Avg Fuel/Clad Temperature 

• Max/Min Clad Hoop Stress 

• Min. Gap Thickness 

• Rod Power, Burnup, Internal Pressure 

• EXODUS  

– more finely resolved data (such as axial distributions) 

– more complicated to access (currently in progress) 

• A postprocessor has been developed that reads appropriate data 
from the CSV file and consolidates that data onto the HDF5 file 
produced by VERA-CS 

• This can then be visualized with VERAView 
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Watts Bar Unit 1 [5] 

• Began operating in 1996 

• Operating 14th cycle now 

• 3,411 MWth with 1.4% uprate 
in 2001 

• 193 Westinghouse fuel 
assemblies 

– 17x17 
• 264 fuel rods 

• 25 guide/instrumentation 

– 12’ tall 

• 8 spacer grids 

– 2 Inconel 

– 6 Zircaloy 

• Cycles 1-12 have been 
simulated with VERA-CS 

– Tomorrow Morning 8 am 
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Cycle 1 Core Layout and Rod Banks 
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Cycle 1 Power History 
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Results – Cycle 1 

 

 

 

Maximum Centerline Fuel Temperature (K) 
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Results – Cycle 1 

 

 

Minimum Gap Thickness (m) 

Negative gap thickness indicate mesh overlap in BISON 
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Results – Cycle 1 

 

 

 

Maximum Clad Hoop Stress (Pa) 

Stress spiking after coming back to full power, though values are still low 
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Cycle 2 Core Layout 

H G F E D C B A

8 H-14 N-13 128* R-8 128 N-8 L-15 F-11

9 N-3 104 A-9 104 | 8 B-11 128* 48 C-4

10 128* G-15 E-15 D-7 104 | 8 B-7 48 G-10

11 H-1 104 | 8 J-12 128* N-2 128 48 F-13

12 128 E-14 104 | 8 P-3 A-6 104 | 4 B-4 Batch 1 - 2.11%

13 H-3 128* J-14 128 104 | 4 P-6 Batch 2 - 2.619%

14 R-5 48 48 48 M-14 K-2 Batch 3 - 3.1%

15 L-10 M-13 F-9 C-10 Batch 4 - 3.709%

 * 132 inch IFBA (All others 120 inch)

IFBA | WABA or                               

Previous Cycle 1 Location

NOTE: These results were obtained before IFBA capability (He production) was 
available in BISON (as of March 2016).  Ongoing and future analysis includes IFBA. 



14 

Cycle 2 Power History 



15 

Results – Cycle 2 

 

 

 

Maximum Centerline Fuel Temperature (K) 
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Results – Cycle 2 

 

 

 

Minimum Gap Thickness (m) 
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Results – Cycle 2 

 

 

 

Maximum Clad Hoop Stress (Pa) 

Stresses spike after startup and relax by end of cycle 
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Results – Cycle 2 

 

 

 

Cumulative Damage Index (%) 
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Cycle 3 Core Layout 

H G F E D C B A

8 1A-10 H-6 128 L-5 N-13 D-8 104 J-9

9 F-8 128 | 8 D-13 128 | 8 B-7 104 128 M-10

10 128 C-12 L-2 N-11 128 G-11 128 M-2 Batch 1 - 2.11%

11 E-5 128 | 8 E-3 128 J-3 128 16 A-5 Batch 2 - 2.619%

12 N-3 J-14 128 N-7 E-2 128 P-10 Batch 3 - 3.1%

13 H-12 104 E-9 128 128 16 G-15 Batch 4 - 3.709%

14 104 128 128 16 F-2 A-9 Batch 5A - 3.807%

15 J-7 F-4 P-4 L-15 Batch 5B - 4.401%
IFBA | WABA or                               

Previous Cycle 1 Location
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Cycle 3 Power History 
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Results – Cycle 3 

 

 

 

Maximum Centerline Fuel Temperature (K) 
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Results – Cycle 3 

 

 

 

Minimum Gap Thickness (m) 
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Results – Cycle 3 

 

 

 

Maximum Clad Hoop Stress (Pa) 
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Results – Cycle 3 

 

 

 

Cumulative Damage Index (%) 
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Conclusions 

 

 

• Standalone Capability demonstrated for WBN1, Cycles 1-3 

– Better estimation of PCI indicators 

• Which rods are in contact? 

• How high are the clad stresses? 

• Which may need more detailed analysis? 

– Observed trends resulting from various fuel performance 
phenomena 

• Swelling, densification, clad creep 

– No rods were particularly concerning with respect to 
failure 

• No reported failures, so this is expected 
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Future Work and Application 

 

 

• Developing Capability 

– Need IFBA modelling capability (already complete) 

– Processing more detailed results with EXODUS files 

• Perform fuel temperature comparisons to existing 
simulations 

• Future Application 

– Start-up simulation 

• Assess ramping speed and impact on hoop stress and damage 

– Assessing PCI in Watts Bar Cycles 6-7  
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