Polaris Overview

Polaris Overview

- Fast 2-D lattice physics
- Simple Input
 - Assembly geometry
 - Material definitions
 - Range of system conditions
- Output
 - Assembly-averaged few-group cross sections
 - Used as input for nodal core simulator such as PARCS
 - Depletion material isotopics
 - Used for spent fuel characterization
- Modeling Requirements
 - Accurate prediction of lattice k-eff, pin power distribution, fewgroup cross-sections, depletion isotopics
 - Relatively fast: 10,000s of transport calculations per core analysis

Multigroup Reactor Physics Calculations The Physics

- 3 fundamental physics
- 1. Cross section processing
- 2. Multigroup transport

- Material Concentrations
- MG Cross sections

Depletion/Decay

New Material Concentrations

Reactor Physics Calculations The Control Sequence

- The SCALE control sequences manage the calculation
- Functions include:
 - Transport-to-Depletion coupling
 - Normalizes power/flux levels
 - Prepares transition matrices for ORIGEN
 - Manages time-stepping (predictor-corrector)
 - Solution archival
 - Branch calculations
 - for 2-D lattice physics analysis
 - Model updates
 - Concentration changes from depletion
 - Geometry, temperature, concentrations changes (user input)

The Polaris Lattice Physics Sequence

- Nuclear Data Libraries:
 - ENDF/B-V7.1 252G and 56G
- XS Processing (ESSM)
 - Embedded Self-Shielding Method
 - Novel ORNL-developed XS processing method
 - XS processing is "embedded" into 2D geometry
 - No input requirements
 - Mark L. Williams and Kang Seog Kim. "The Embedded Self-Shielding Method." *PHYSOR* 2012. Knoxville, Tennessee, USA
- Multigroup Transport
 - 2-D assembly calculation
 - New Method-of-Characteristics (MOC) solver

Polaris Course Objectives

- 1. Setup Polaris input files using Fulcrum
- 2. Setup and run pin, assembly, and reflector models for a wide range of LWR fuel designs
- 3. Setup and run single statepoint, depletion, branch, and reflector calculations with Polaris
- 4. Understand current modeling limitations with Polaris in SCALE 6.2
- 5. Execute Polaris using Fulcrum and the SCALE command window
- 6. Understand various Polaris output edits

Training Outline

Basics

- Input: title, lib, %, geom, comp, mat, pin
- Output: k-eff, FG XS, .png file
- Assembly Geometry
 - Input: hgap, channel, pinmap, system, state, insert/control maps
 - Output: pin powers
- Depletion
 - Input: power, bu, t, dbu, dt, ti, bui, basis
 - Output: mass, power/flux edits, .f71 file
- BWR geometry
 - Input: box, cross, control blade, displacement maps

- Lattice Physics
 - Input: branch block, history block, reflector geometry

Miscellaneous Options

- Critical spectrum calculation
- Print options
- Modeling spacer grids and IFBA
- New detector edits demo

Polaris Input Basics

=polaris

```
% Polaris input goes here!
```

```
input format is version 6.2
```

8 end

```
10=polaris_6.3
```

```
12 % Polaris input goes here!
```

```
14 % input format is version 6.3
```

15 16 end

11

13

```
17
```

18 19

30

Basics

• Polaris input starts with: (SCALE 6.2.0 and all updates) =polaris **=polaris 6.3** (SCALE 6.2.2 and 6.2.3)

Polaris input terminates with:

end

• =polaris 6.3 contains several new input cards and some modifications to original input cards such as the **pin** card

For this overview, we use use **=polaris** 6.3


```
1=polaris_6.3
                 _____
   general options
        .
 5 title "W17x17 pin cell"
       "Polaris training"
 9 % 252-group ENDF/B-VII.1 library
11 lib "v7-252"
12
13
    8 or
14
15 lib "fine n"
16
18 % 56-group ENDF/B-VII.1 library
20lib "v7-56"
21
22
    8 or
23
24 lib "broad n"
25
26
27
28
29
30 end
```

Basics

• title - optional

- double quotes
- one or more titles allowed
- comment %
 - does not have to be first character on line
 - cannot appear INSIDE cards
- lib (or library) optional
 - "v7-252" or "fine_n"
 - "v7-56" or "broad_n"
 - default "v7-252"


```
1=polaris 6.3
    general options
 5 title "W17x17 pin cell"
 6 lib "broad n"
                _____
 7 8
    geometry
 8 8
10 geometry W17 : ASSM npins=1
11
                      ppitch=1.26
12
                       sym=FULL
13
14
     %equivalent to
15
16 geom W17 : ASSM 1 1.26 FULL
17
18
     %equivalent to
19
20 geom W17 : ASSM 1 sym=FULL
21
                        ppitch=1.26
22
23
     %equivalent to
24
25 geom W17 : ASSM 1 1.26
26
27
28 end
29
30
```

geom GNAME : ASSM npins=Int ppitch=Real [sym=<u>FULL</u>|SE]

- geom or geometry geometry card
- GNAME user geometry name
- ASSM indicates assembly geometry
- npins # of pins on side of the assembly
- ppitch pin pitch (cm)
- sym optional
 - FULL or SE (southeast)
 - default FULL
- Keywords npins=, ppitch=, and sym=
 - Optional if in correct order
 - Required once out of order


```
1=polaris_6.3
 3% general options
 5 title "W17x17 pin cell"
 6 lib "broad n"
            _____
 7 8-----
 8 % geometry
10 geom W17 : ASSM 1 1.26 FULL
   _____
12 % comps and mats
              _____
13 &-----
14 composition c f31 : UOX 3.1
15 material FUEL.1 : c f31 dens=10.26
16
                       temp=600
17
     %equivalent to
18
19
20 comp c f31 : UOX 3.1
21 mat FUEL.1 : c_f31 10.26 600
22
23 end
24
25
26
27
28
29
30
```

comp card and mat card comp CNAME : UOX enr=Real

- comp or composition
- CNAME user composition name
- UOX indicates uranium dioxide
- enr U-235 enrichment %

mat MNAME : CNAME [dens=Real] [temp=Real]

- mat or material
- MNAME user material name (Word.Int)
- CNAME user composition name
- dens density (g/cm³)
- temp temperature (K)

Compositions and Materials

- Basic Concept
 - composition defines a set of isotopes and their relative distribution
 - material is a composition at a given density and temperature
 - same composition can define multiple materials
- Naming convention
 - **composition**: what is it? (zirc4)
 - material: what does it do? (CLAD.1)

- Several comp cards exists
 - comp CNAME : NUM ...
 - define by atom %
 - comp CNAME : WT ...
 - define by weight %
 - comp CNAME : FORM ...
 - define chemical compound
 - comp CNAME : CONC ...
 - define number densities
 - comp CNAME : LW ...
 - define borated water

2							
XXX	1	=pola	aris_6.3				
XX	2	8					%
XX	3	१ CO Ⅰ	np example	9 <i>5</i>			
ANA	4	8					%
AAA	5						
CANON!	6	comp	D20	:	FOI	RM 1002=2	2 016 =1
/	7						
	8	comp	c_f30	:	UO	X 3.0	
1	9	comp	c_gdfuel	:	WT	GD203=7	c_f30=-100
/	10						
	11	comp	c_waba	:	COL	1C	
	12		5010)=:	2.98	3553E-03	
1	13		5011	L=:	1.21	L192E-02	
	14		6000)=:	3.77	7001E-03	
	15		8010	6=!	5.85	5563E-02	
	16		1302	7=:	3.90)223E-02	
	17					_	
	18	comp	WATER	:	LW	borppm=1	1300
	19			_			
	20		%equiva	a 10	ent	to	
	21					1000	
	22	comp	WATER	:	ΓM	1300	
	23						
	24	ena					
	25						
	20						
	21						
	20						
	29						

Composition Examples

Pre-defined compositions

	Standard Molecular Compositions
CNAME	Description
H2O	light water
B4C	Boron carbide burnable poison material
ER2O3	Erbium oxide burnable poison material
GD2O3	Gadolinium oxide burnable poison material
FILLGAS	Helium gas

	Standard Reactor Mixtures and Alloys
CNAME	Description
AIC	Ag-In-Cd control rod absorber material
PYREX	Pyrex glass
ZIRC2	Zircaloy-2 clad material
ZIRC4	Zircaloy-4 clad material
SS304	Stainless Steel 304
SS316	Stainless Steel 316
INC718	Inconel 718
WATER	Light water with trace amount of boron

Pre-defined compositions have reference density. **dens=** not required for mat card.

1=polaris_6.3
2 88
3 % general options
4 % %
5 title "W17x17 pin cell"
6 lib "broad_n"
7 88
8 % geometry
9 %%
10 geom W17 : ASSM 1 1.26
11 88
12 % comps and mats
13 88
14 comp c f31 : UOX 3.1
15 mat FUEL.1 : c f31 10.26 600
16 mat GAP.1 : FILLGAS temp=600
17 mat CLAD.1 : ZIRC4 temp=600
18 comp WATER : LW 1300
19 mat COOL.1 : WATER 0.661 600
20 88
21 % pins
22 88
23pin F : 0.4096 0.418 0.475
24 : FUEL.1 GAP.1 CLAD.1 COOL.1
25 end
26
27
28
29
30

pin PINID : r1 r2 ... ri ... rN : M1 M2 ... Mi ... MN [Mout]

PINID – pin identifier

- r zone radius (cm)
- M zone material
- Additional value of M for outermost region (Mout)

pin

1=polaris_6.3 2 %%
3 % general options
4 88
5 title "W17x17 pin cell"
6 lib "broad n"
7 88
8 % geometry
9 ୫
10 geom W17 : ASSM 1 1.26
11 88
12 % comps and mats
13 %%
$14 \operatorname{comp} c_{f31} : UOX 3.1$
15 mat FUEL.1 : c_f31 10.26 600
16 mat GAP.1 : FILLGAS temp=600
12 nat CLAD.1 : ZIRC4 temp=600
$18 \operatorname{COMP} WATER : LW I300$
20 %
20 %%
22 %
23pin F : 0.4096 0.418 0.475
24 : FUEL 1 GAP 1 CLAD 1 COOL 1
25 end
26
27
28
29
30

Exercises

Part 1 w17x17_pin.inp

- 1. Finish pin cell input shown here
- 2. Run calculation
- 3. Walk through output
- 4. Record transport k-eff
- Part 2 (on your own)
 - 1. Run with 900 K fuel w17x17_pin_900K.inp
 - 2. Compute reactivity coefficient
 - 3. Revert fuel to 600 K. Run with 1000 ppm boron w17x17_pin_1000ppm.inp
 - 4. Compute reactivity coefficient
- Part 3 (on your own) w17x17_pin_clad.inp
 - 1. Revert boron change.
 - 2. Let's analyze non-Zr cladding.
 - 3. Compute k-eff for the following clad material
 - 4. 7.1 g/cc with a composition of 75 wt% Fe, 20 wt% Cr, and 5 wt% Al. (See comp WT example on "Composition Examples")

mesh and pinmap

2	
XXX	1=polaris_6.3
XX	2 8
XXXX	3 % general options
NXX	4 8
(NNNN)	5 title "W17x17 pin cell"
	6lib "broad_n"
1	7 8
	8 % geometry
1	9 8
1	10 geom W17 : ASSM 1 1.26
	12 % comps and mats
	14 comp c_f31 : UOX 3.1
	15 mat FUEL.1 : c_f31 10.26 600
	16 mat GAP.1 : FILLGAS temp=600
	17 mat CLAD.1 : ZIRC4 temp=600
	18 COMP WATER : LW 1300
	19 mat COOL.1 : WATER 0.661 600
	20δ
	$23 \text{ pip } \mathbf{F} : 0.4096 \ 0.418 \ 0.475$
	24 \cdot FUEL 1 GAP 1 CLAD 1 COOL 1
	25 mesh FUEL : $nr=3$ $ns=4$
	26 mesh CLAD : $ns=-4$
	27 mesh COOL : $nr=2 ns=8$
	28 end
	29
2	30

mesh part 1

National Laboratory

mesh MCLASS|MNAME : [nr=Int] [ns=Int]

- MNAME the material name
- MCLASS the 1st part of the material name
 - e.g., COOL in COOL.1
- nr # of radial mesh for a pin, must be > 0, default 1
- ns # of sectors for a pin, must not equal 0, negative value implies half sector offset, default 1

1=polaris 6.3 2 title "W17x17" 3 lib "broad n" 4 geom W17 : ASSM 5 1.26 SE _____ 6 % comps and mats 7 8-----8 comp c f31 : UOX 3.1 9 mat FUEL.1 : c f31 10.26 600 10 mat GAP.1 : FILLGAS temp=600 11 mat CLAD.1 : ZIRC4 temp=600 12 comp WATER : LW 1300 13 mat COOL.1 : WATER 0.661 600 14 8-----**15**% pins and mesh 16 8-----17pin F : 0.4096 0.418 0.475 18 : FUEL.1 GAP.1 CLAD.1 COOL.1 **19**pin I : 0.559 0.605 20 : COOL.1 CLAD.1 COOL.1 21 mesh FUEL : nr=3 ns=422 mesh COOL : nr=2 ns= 8 23 8-----24 % maps 25 %-----26 pinmap 27 I 28 F F 29 FFF 30 ena

pinmap $PINID_1 PINID_2 \dots PINID_i \dots PINID_N$

- supports full, quarter, or octant symmetry
- For 5x5 assembly, the pinmap can contain
 - 25 entries (geom sym=FULL)
 - 15 entries (SW diagonal sym=FULL)
 - 9 entries (SE quadrant, geom sym=SE|FULL)
 - 6 entries (SSE octant, geom sym=SE|FULL)

pinmap

Exercises

- Copy w17x17_pin.inp to w17x17_rev0.inp
 - 1. Copy mat CLAD.1 as TUBE.1
 - 2. Copy mat COOL.1 as MOD.1
 - 3. Add **pin** (I) for instrument tube
 - MOD.1 0.559 cm
 - TUBE.1 0.605 cm
 - 4. Add pin (G) for guide tube
 - MOD.1 0.561 cm
 - TUBE.1 0.602 cm
 - 5. Add pinmap shown here
 - 6. Modify geom card to have npins=17 and sym=SE
 - 7. Custom mesh
 - 1. COOL: nr=2 ns=8
 - 2. CLAD: ns=-4
 - 3. MOD: nr=2 ns=8
 - 4. FUEL: nr=3 ns=8
 - 8. Run calculation
 - 9. Record transport k-eff

4

hgap card channel card size=2 pins


```
1=polaris_6.3
    geometry
 6 geom W17 : ASSM 17 1.26
                              SE
 7 hgap 0.04 : COOL.1
      %equivalent to
10
11 hgap 0.04 0.04
12
      : COOL.1 COOL.1
13
14
      %equivalent to
15
16hgap 0.04
               0.04
                      0.04
                              0.04
17
      : COOL.1 COOL.1 COOL.1 COOL.1
18
19
20
21
22
23
24
25
26
27
28
29
```

hgap

- hgap optional
 - half distance between adjacent assemblies
- hgap [dE dN dW dS] [: ME MN MW MS]
- d half distance (cm)
- M material name
- 1, 2, 4 values are acceptable
 - 1: same values for all 4 faces (PWR)
 - 2: East=South and North=West (BWR)
 - 4: general case, all four sides can be different

1=polaris_6.3
2 title "W17x17"
3lib "broad_n"
4 88
5 % geometry
6 %%
7 geom W17 : ASSM 4 1.26
8 hgap 1.26 : COOL.1
9 88
10 % comps and mats
11 88
$12 \operatorname{comp} c_{f31} : UOX 3.1$
13 mat FUEL.1 : c_f31 10.26 600
14 mat GAP.1 : FILLGAS temp=600
15 mat CLAD.1 : ZIRC4 temp=600
16 comp WATER : LW 1300
17 mat COOL.1 : WATER 0.661 600
18 **
19 % pins and mesh
$\begin{array}{c} 21 \text{ pin } \mathbf{F} : 0.4096 \ 0.418 \ 0.475 \\ 22 \\ \end{array}$
22 : FUEL.I GAP.I CLAD.I COOL.I
$24 \operatorname{mach} COOL : nr=3 \operatorname{ns}=4$
24 mesh COOL: $Hr = 2 Hs = 6$
25 6110
27
28
29
30

hgap

1=polaris_6.3
2 title "W17x17"
3lib "broad_n"
4 8
5 % geometry
6 *
7 geom W17 : ASSM 4 1.26
8 hgap 1.26 0.61 : COOL.1 MOD.1
9 %
10 % comps and mats
$12 \text{ comp } C_{131} : 00x 3.1$
14 mat CAD 1 . ETILCAS temp=600
14 mat GAP.1 : FILLGAS temp=600
16 comp WATER : IN 1200
17 mat COOL 1 : WATER 0 661 600
$18 \text{ mat} MOD 1 \cdot WATER 0.661.600$
19 %
20 * pins and mesh
21 8
22 pin F : 0.4096 0.418 0.475
23 : FUEL.1 GAP.1 CLAD.1 COOL.1
24 mesh FUEL : $nr=3 ns=4$
25 mesh COOL : nr=2 ns= 8 nf=2 nd=3
26 mesh MOD : nf=3 nd=2
27 end
28
29
30

mesh part 2

mesh MCLASS|MNAME : [nr=Int] [ns=Int] [nf=Int] [nd=Int]

nf – number of faces per pin, default 2nd – number of divisions per pin, default 1

<pre>1 =polaris_6.3 2 3 %% 4 % geometry 5 %% 6 geom W17 : ASSM 1 1.26 7 hgap 0.04 8 channel COOL 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 28 29 30</pre>			
2 3 %		1=polaris_6.3	
3 %	X	2	
4 % geometry 5 %		3 ୫	웅
5 %		4 % geometry	
6 geom W17 : ASSM 1 1.26 7 hgap 0.04 8 channel COOL 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		5 %	웅
7 hgap 0.04 8 channel COOL 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		6 geom W17 : ASSM 1 1.26	
8 channel COOL 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		7 hgap 0.04	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		8 channel COOL	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		9	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		10	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30			
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		12	
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		14	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		15	
17 18 19 20 21 22 23 24 25 26 27 28 29 30		16	
18 19 20 21 22 23 24 25 26 27 28 29 30		17	
19 20 21 22 23 24 25 26 27 28 29 30		18	
20 21 22 23 24 25 26 27 28 29 30		19	
21 22 23 24 25 26 27 28 29 30		20	
22 23 24 25 26 27 28 29 30		21	
23 24 25 26 27 28 29 30		22	
24 25 26 27 28 29 30		23	
25 26 27 28 29 30		24	
26 27 28 29 30		25	
27 28 29 30		26	
28 29 30		27	
29 30		28	
30		29	
		30	

channel

 channel – defines material for outermost pin region

channel [Mchan=MCLASS]

- Mchan material class: the 1st part of the mat name
- The actual material used in the outermost pin region is the first sorted material with matching class, typically COOL.1

1=polaris_6.3	¹ =polaris_6.3 Channel before	e and afte
2 title "W17x17"	2 title "W17x17"	
3lib "broad_n"	3lib "broad_n"	
4 %%	4 88	
5 % geometry	5 % geometry	
6 %%	6 88	
7 geom W17 : ASSM 17 1.26	7 geom W17 : ASSM 17 1.26	
8 hgap 0.04 : COOL.1	8 hgap 0.04 : COOL.1	
9 88	9 channel COOL	
10 % comps and mats	10 88	
11 %%	11 % comps and mats	
12 comp c_f31 : UOX 3.1	12 88	
13 mat FUEL.1 : c_f31 10.26 600	13 comp c_f31 : UOX 3.1	
14 mat GAP.1 : FILLGAS temp=600	14 mat FUEL.1 : c_f31 10.26 600	
15 mat CLAD.1 : ZIRC4 temp=600	15 mat GAP.1 : FILLGAS temp=600	
16 mat TUBE.1 : ZIRC4 temp=600	16 mat CLAD.1 : ZIRC4 temp=600	
17 comp WATER : LW 1300	17 mat TUBE.1 : ZIRC4 temp=600	
18 mat COOL.1 : WATER 0.661 600	18 comp WATER : LW 1300	
19 mat MOD.1 : WATER 0.661 600	19 mat COOL.1 : WATER 0.661 600	
20 88	20 mat MOD.1 : WATER 0.661 600	
21 % pins and mesh	21 % %	
22	22 % pins and mesh	
23pin F : 0.4096 0.418 0.475	23 %%	
24 : FUEL.1 GAP.1 CLAD.1 COOL.1	24 pin F : 0.4096 0.418 0.475	
25pin I : 0.559 0.605	25 : FUEL.1 GAP.1 CLAD.1	
26 : MOD.1 TUBE.1 COOL.1	26pin I : 0.559 0.605 : MOD.1 TUBE.1	
27pin G : 0.561 0.602	27 pin G : 0.561 0.602 : MOD.1 TUBE.1	
28 : MOD.1 TUBE.1 COOL.1	28 mesh COOL : $nr=2 ns=8$	
29 mesh COOL : $nr=2$ ns= 8	29 mesh FUEL : $nr=3$ ns= 8	CAK RIDGE
30 mesh FUEL : nr=3 ns= 8	30	National Laboratory

8	1=polaris 6.3
	2lib "broad n"
	3 %%
	4 % geometry
	5 %%
	6 geom fake : ASSM 3 1.26
	7 channel COOL
	8 %%
	9 % comps and mats
	10 88
	$11 \operatorname{comp} c_{f31} : \operatorname{UOX} 3.1$
	12 mat FUEL.1 : c_f31 10.26 600
	13 mat GAP.1 : FILLGAS temp=600
	14 mat CLAD.1 : ZIRC4 temp=600
	15 comp WATER : LW 1300
	16 mat COOL.1 : WATER 0.661 600
	19 s =
	$20 \text{ pin } \text{f} : 0.4096 \ 0.416 \ 0.475$
	$22 \operatorname{pin} X \operatorname{size} = 2 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot \operatorname{FUEL} 1 \cdot \operatorname{CLAD}$
	23
	24 * equivalent to
	25
	26 pin X 2 : 1.0 1.1 : FUEL.1 CLAD
	27 pinmap F F F
	28 FXX
	29 F X X
	30 end

pin part 2

pin PINID [size=Real]

- : r1 r2 ... ri ... rN
- : M1 M2 ... Mi ... MN [Mout]
- size=1 is default.
- size=2 creates 2x2 pin cell

\geq	1=polaris 6.3
	2lib "broad n"
	3 %
	4 % geometry
	5 %
	6 geom fake : ASSM 3 1.26
	7 channel COOL
	8 %
	9 % comps and mats
	10 8
	$11 \operatorname{comp} c_{f31} : \operatorname{UOX} 3.1$
	12 mat FUEL.1 : c_f31 10.26 600
	13 mat GAP.1 : FILLGAS temp=600
	14 mat CLAD.1 : ZIRC4 temp=600
	15 comp WATER : LW 1300
	16 mat COOL.1 : WATER 0.661 600
	17 %
	$20 \text{ pin } \mathbf{F} : 0.4096 \ 0.418 \ 0.475 $
	$22 \text{ pip } X \text{ size} = 2 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot \text{FUEL } 1 \text{ CLAD}$
	24 * equivalent to
	25
	26 pin X 2 : 1.0 1.1 : FUEL.1 CLAD
	27 pinmap F F F
	28 FXX
	29 F X X
	30 end

pin part 2

pin PINID [size=Real]

- : r1 r2 ... ri ... rN
- : M1 M2 ... Mi ... MN [Mout]
- size=1 is default.
- size=2 creates 2x2 pin cell
- Material class can be used instead of material name if only a single material exist in the model
 - Error message if multiple materials share the same material class
 - GAP, CLAD, TUBE vs GAP.1 CLAD.1 TUBE.1

Exercises

- Copy w17x17_rev0.inp to w17x17_rev1.inp
 - 1. Add 0.04 half-gap of coolant
 - 2. Add channel card
 - 3. Remove outermost materials in pin F, G, and I
 - 4. Add **pin** (P) for a fake **size**=2 guide tube
 - MOD.1 0.85 cm
 - TUBE.1 1.0 cm
 - 5. Modify **pinmap** to have **pin** P in location shown on right
 - 6. (Optional) Modify **pin** cards: CLAD.1-> CLAD, GAP.1 -> GAP, TUBE.1 -> TUBE)
 - 7. Run calculation
 - 8. Record transport k-eff

PWR-specific defaults

system PWR

Material	Composition	Plot Color	Additional info			
Unless noted otherwise, T=565K, nr=1, ns=8, nf=2, nd=1						
COOL.1	H2O	cyan	pin coolant material, nr=2			
COOL.2	H2O	aquamarine	use for large guide tubes with user-defined mesh			
MOD.1	H2O	blue	optional, use for inner guide tube material			
Water materials initialized to boron = 0 ppm, density = 0.743 g/cc						
FUEL.1	n/a	red	depletable (deplete), auto-expanded (shield)			
BP.1	n/a	n/a	depletable (deplete), auto-expanded (shield)			
CNTL.1	AIC	pink	auto-expanded (shield)			
CNTL.2	B4C	cadetblue	auto-expanded (shield)			
CLAD.1	ZIRC4	lime				
TUBE.1	ZIRC4	yellow	optional for guide tubes			
GAP.1	FILLGAS	rosybrown				
STRUCT.1	SS304	goldenrod	blade sheath/central support material			

1=polaris 6.3	1=polaris 6.3 Overteem DM/D before c	nd
2 title "W17x17"	2 title "W17x17" System FVVR Derore d	
3lib "broad_n"	3lib "broad_n"	ftor
4 8	4 system PWR	lei
5 % geometry	5 8	
6 %	6 % geometry	
7 geom W17 : ASSM 17 1.26	7 88	
8 hgap 0.04 : COOL.1	8 geom W17 : ASSM 17 1.26	
9 channel COOL	9 hgap 0.04	
10 %	10 %%	
11 % comps and mats	11 % comps and mats	
12 8	12 % %	
$13 \operatorname{comp} c_{f31} : UOX 3.1$	$13 \operatorname{comp} c_{f31} : UOX 3.1$	
14 mat FUEL.1 : c_f31 10.26 600	14 mat FUEL.1 : c_f31 10.26	
15 mat GAP.1 : FILLGAS temp=600		
16 mat CLAD.1 : ZIRC4 temp=600	16% pins and mesh	
17 mat TUBE.1 : ZIRC4 temp=600		
18 comp WATER : LW 1300	18 pin F : 0.4096 0.418 0.475	
19 mat COOL.1 : WATER 0.661 600	19 : FUEL.1 GAP CLAD	
20 mat MOD.1 : WATER 0.661 600	20 pin I : 0.559 0.605 : MOD.1 TUBE	
	21pin G : 0.561 0.602 : MOD.1 TUBE	
22 * pins and mesh	22 mesh FUEL : hr=3	
23 = 5		
$24 \text{ pin } F : 0.4096 \ 0.418 \ 0.475$	24	
$25 \qquad : FOEL.I GAP CLAD$		
$27 \text{ pin G} \cdot 0.561 0.602 \cdot \text{MOD} 1 \text{ TUBE}$	27 Note: right hand side uses default	
28 mesh COOL : nr=2 ns= 8	28 avetere teres aretures	
29 mesh FILEL : $nr=3$ $ns=8$	system temperatures	
30	30 CAK RI	DGE
	National Jak	oratory

Exercises

Copy w17x17_rev1.inp to w17x17_rev2.inp

- 1. Remove **pin** P, revert pinmap to correct W17x17 map
- 2. Add system PWR
- 3. Remove channel card
- 4. Remove COOL.1 from hgap card
- 5. Remove **mat/comp** cards for default PWR materials
 - WATER, CLAD.1, GAP.1, TUBE.1, COOL.1, MOD.1
- 6. Remove **mesh** cards for default PWR materials
 - COOL.1, MOD.1, CLAD.1
- 7. Remove temperature from FUEL.1 mat card
- 8. Add a new **mesh** card for FUEL.1 with nr=3
- 9. Run calculation
- 10. Record transport k-eff

state card to change material properties

1.1.	
XXX	31 8
XX	32 % maps
\times	33 8
XX	34 pinmap
22X	35 I
	36 F F
1/	37 FFF
/ /	38 GFFG
///	39 FFFFF
///	40 FFFFG
/ /	41 GFFGFFF
/ /	42 FFFFFFF
///	43 FFFFFFFF
/ /	44 8
	45 % state
	46 8
	47 state ALL : temp=590
	48 COOL : dens=0.68 boron=1300
	49 MOD : dens=0.71 boron=1300 temp=575
	50 FUEL : temp=900
	51 CLAD : temp=700 TUBE : temp=580
	52 end
	53
	54
	55
	56
	57
	58
	59
2	60

state part 1

state MNAME|MCLASS : p1=val1 p2=val2 ... MNAME|MCLASS : p1=val1 p2=val2 ...

- MNAME or MCLASS material name (FUEL.1) or material class (FUEL) or ALL can be used to initialize all material properties to same value
- p property name

. . .

- all materials have dens= and temp= properties
- system PWR: COOL and MOD have boron= properties
- system BWR: COOL and MOD have boron= and void= properties
- val property value
- Whitespace before and after : is recommended

Exercises

- Part 1 of 3
- 1. Copy w17x17_rev2.inp to w17x17_rev3.inp
- 2. Add a **state** card with the following properties
 - Initialize all materials T=590 K
 - COOL and MOD boron is 1300 ppm
 - COOL density is 0.68 g/cc
 - MOD density is 0.71 g/cc
 - Clad temperature is 700 K
 - Fuel temperature is 900 K

- 3. Run calculation
- 4. Record transport k-eff

- Exercises
- Part 2 of 3: Takahama assembly depletion benchmark
 - 1. Copy taka_starter.inp as taka.inp
 - 2. Add geometry info
 - 17x17, pin pitch 1.265 cm, lattice pitch 21.6126 cm, ¼ symm
 - Fuel pin: 0.4025 cm fuel radius, 0.475 cm clad radius (no gap), 1 radial fuel ring (FUEL.1)
 - Gad pin: 5 radial fuel rings (FUEL.2)
 - Guide/instrument tube: inner rad 0.573 cm (COOL.1), outer rad 0.613 cm (TUBE.1)
 - Pin map (see pic)
 - 3. Record transport k-eff

https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-1.pdf additional data at: http://info.ornl.gov/sites/publications/files/Pub23359.pdf

http://info.ornl.gov/sites/publications/files/Pub23359.pdf

- Part 3 of 3: ce14x14.inp
 - Calvert Cliffs D047 Combustion Engineering 14x14 design
 - Rod pitch 1.4732 cm
 - Assembly pitch 20.78 cm
 - Fuel:
 - 10.045 g/cc
 - 3.038% enrichment
 - Pin Geometry
 - 0.47815 cm fuel radius
 - 0.49275 cm clad inner radius
 - 0.5588 cm clad outer radius
 - Guide tube/Instrument Tube (size=2)
 - 1.314 cm inner radius, 1.416 cm outer radius
 - 16 sectors, 3 rings on the exterior (COOL.2)
 - 16 sectors, 4 rings on the interior (MOD.1)
 - State
 - Coolant/Mod: 570 K, 0.7307 g/cc, 663 ppm
 - Fuel T=997 K
 - Other materials: 570 K

insert card control card

<pre>31 pin G : 0.561 0.602 : MOD.1 TUBE 32 pinmap 33 I 34 F F 35 F F F 36 G F F G 37 F F F F F F 38 F F F F F F G 39 G F F G F F F 40 F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43</pre>	31 pin G : 0.561 0.602 : MOD.1 TUBE 32 pinmap
32 pinmap 33 I 34 F F 35 F F F 36 G F F G 37 F F F F F F 38 F F F F F F F 39 G F F G F F F 40 F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 - 50 P P 51 52 - 53 P P 54 - 55 56 % 57 % state 58 %	32 pinmap
33 I 34 F F 35 F F F 36 G F F G 37 F F F F F F 38 F F F F F F F 39 G F F G F F F 40 F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 - 50 P P 51 - 52 - 53 P P 54 - 56 % 57 % state 58 %	
34 F F 35 F F F 36 G F F G 37 F F F F F F 38 F F F F F F F 40 F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 51 52 53 54 55 56 % 57 % state 58 %	33 I
35 F F F 36 G F F G 37 F F F F F F F 38 F F F F F F F F 40 F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 51 52 53 53 54 55 56 57<% state 58 59 etate NUL - temp=50	34 F F
36 G F F G 37 F F F F F F F 38 F F F F F F F F F 40 F F F F F F F F F F F 41 F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 - 49 50 P - P 51 P 53 P - P 54 	35 F F F
37 F F F F F F 38 F F F F F F F F 40 F F F F F F F F F F F 41 F F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 - 50 P 51 52 - 53 P 54 55 56 % 57 % state 58 %	36GFFG
38 F F F F F F G 39 G F F G F F F F 40 F F F F F F F F F F F 41 F F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 P 51 52 53 P 54 55 56 % 57 % state 58 %	37 F F F F F
39 G F F G F F F F 40 F F F F F F F F F F F 41 F F F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 P 51 52 53 P 54 55 56 % 57 % state 58 %	38 F F F F G
40 F F F F F F F F F F F 41 F F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 P - P 51 P 52 P 53 P - P 54	396 F F G F F F
41 F F F F F F F F F F F 42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 P 51 52 53 P 53 P 54 55 56 57 % state 58 %	40FFFFFFF
42 pin P : 0.214 0.231 0.241 0.427 43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP 47 48 49 50 P 51 52 9 53 P 9 54 56 % 57 % state 58 %	41 F F F F F F F F F F F F F F F F F F F
43 0.437 0.484 0.561 0.602 44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP Image: Comparison of the second of the secon	42 pin P : 0.214 0.231 0.241 0.427
44 : GAP TUBE GAP BP 45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP Image: Comparison of the second of the	43 0.437 0.484 0.561 0.602
45 GAP TUBE MOD.1 TUBE 46 insert PYREX_MAP	44 : GAP TUBE GAP BP
46 insert PYREX_MAP 47 48 49 50 P P 51 P 52 P 53 P P 54 55 56 % 57 % state 58 % 59 ctate AIL 50 ctate AIL	45 GAP TUBE MOD.1 TUBE
$ \begin{array}{c} 47 \\ 48 \\ \\ 49 \\ \\ 50 \\ P \\ \\ 51 \\ \\ 52 \\ \\ 52 \\ \\ 52 \\ \\ 52 \\ \\ 52 \\ \\ \\ 52 \\ \\ \\ 52 \\ \\ \\ 52 \\ \\ \\ \\ 52 \\ \\ \\ \\ \\ 53 \\ P \\ \\ \\ \\ \\ \\ 55 \\ \\$	46 insert PYREX_MAP
48 - - 50 P - 51 - - 52 - - 52 - - 52 - - 53 P - 54 - - 54 - - 55 - - 56 - - 57 * state 58 * - 59 atato Att	
49 50 P P 51 - - 52 - - 52 - - 52 - - 53 P - 54 - - 55 - - 56 * - 57 * state 58 * - 59 * * 58 * *	48
$ \begin{array}{c} 50 P P \\ 51 P \\ 52 P \\ 53 P - P \\ 54 \\ 55 \\ 56 8 \\ 57 8 state \\ 58 8 \\ \\ 58 8 \\ \\ 59 state \\ 50 state \\$	
51 52 53 7 53 7 54 54 55 56 8 57 8 state 58 8 59 state 58 8 50 state 58 50 state 58 50 state 59 state 59 state	
$ \begin{array}{c} 52 \\ 53 \\ P \\ - \\ 54 \\ - \\ 55 \\ - \\ 56 \\ 8 \\ - \\ 57 \\ 8 \\ 8 \\ - \\ 58 \\ 8 \\ - \\ 58 \\ 8 \\ - \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58$	51
53 P P P 54 - - 55 - - 56 - - 57 % state - - 58 % - - 59 state - -	
54 55 56 57 8 58 59 59 50 51 52 56 57 8 58 59 50 50 51 52 53 54 50 50 51 52 53 54 55 56 57 58 59 50 50 50 50 50 50 50 50 50 50 51 52 53 54 55 56 57 57 58 50 50 50	
55 56 57 % state 58 %	54
56 % 57 % state 58 %	
57 % state 58 %	
	57 % state
EQ state ATT : temp=EQ0	
Systate ALL : temp=590	59 state ALL : temp=590
60 PYREX MAP : in=yes	60 PYREX MAP : in=yes

insert

 insert – define set of "inserts"--typically loaded in at BOC and removed after first cycle, e.g. WABA

insert INAME: $PINID_1 PINID_2 \dots PINID_i \dots PINID_N$

- INAME name of insert map
- "_" indicates a map location without an insert
- Must include enclosing guide tube
- inserts are inserted into the problem geometry using state or branch cards

state INAME : in=Bool

- INAME the name of the map
- in=yes|true map is inserted
- in=no|false map is not inserted

31 pin W 2 : 1.314 1.416 : COOL.1 TUBE
32 pin C 2 : 0.8 0.9 1.314 1.416
33 : CNTL.1 TUBE COOL.1 TUBE
34
35 pinmap
36 W
37 F F
38 F F F
39 F F F W
40 F F F W W
41 FFFFFF
42 FFFFFFF
43
44 control CR_MAP : RODLET
$\begin{bmatrix} 48 \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
52
54 CP MAP : ip-was
55 FUEL temp=997
56 COOL : dens=0 7307 boron=663
57 COOL : Gens-0.7507 DOION-005
58
59
60

control

• **control** – define a control rod/blade structure

control ENAME: RODLET PINID₁ PINID₂ ... PINID_i ... PINID_N

- RODLET indicates rod-type control map
- inserts are inserted into the problem geometry using state or branch cards

state ENAME : in=Bool

- ENAME the name of the control structure
- in=yes|true structure is inserted
- in=no|false structure is not inserted

Exercises

Create control rod for ce14x14 assembly

- Copy ce14x14.inp to ce14x14_cr.inp
- Control rod material
 - Use CNTL.2 (B4C)
 - Add mesh for nr=3, ns=16
- Control rod cladding
 - Define material TUBE.2 as INC718
- Control rod geometry
 - B4C radius 0.94 cm
 - Clad inner radius 0.95 cm
 - Clad outer radius 1.036 cm
- Record transport k-eff

Table 13: WABA Rod Specification						
Input	Value					
Poison Material	$B_4C-Al_2O_3$					
Boron-10 Loading	6.03 mg/cm					
Poison Density	3.65 g/cc					
Inner Clad Inner Radius	0.286 cm					
Inner Clad Outer Radius	0.339 cm					
Poison Inner Radius	0.353 cm					
Poison Outer Radius	0.404 cm					
Cladding Inner Radius	0.418 cm					
Cladding Outer Radius	0.484 cm					
Annulus Material	Moderator					
Cladding Material	Zircaloy-4					
Plenum/Gap Material	Helium					

- Copy w17x17_rev3.inp as w17x17_waba.inp
- Create WABA comp (WABA), mat (BP.1), pin (W), and insert map (WABA_MAP all 24 GT locations)
- Create PYREX mat (BP.2), pin (P), and insert map (PYREX_MAP all 24 GT locations)
- Create AIC control rod pin (A), and control map (AIC_MAP all 24 GT locations)
- Create B4C control rod pin (B), and control map (B4C_MAP all 24 GT locations)
- Insert WABAs, compute k-eff, proceed next slide

Table 8: RCCA Rod and Drive Specification							
Input	AIC	B ₄ C					
Composition	80/15/5%	100%					
	Ag/In/Cd	B_4C					
	(Lower)	(Upper)					
Poison Density	10.2 g/cc	1.76 g/cc					
Poison Radius	0.382 cm	0.373 cm					
Poison Height	101.6 cm	259.08 cm					
Cladding Inner Radius	0.386 cm						
Cladding Outer Radius	0.484 cm						
Total Poison Height	360.68 cm						
Axial Location of Poison	17.	.031 cm					
(when fully inserted)							
Plenum Height above Poison	10.7 cm						
End Plug Height ≈ 1.9 cm							
Step Size	1.5875 cm						
Maximum number of steps	230						
Cladding Material	SS304						
Plenum Material	Helium						

Hint: th	ese da	ta imply
B4C	is 9.49	wt%

Table 6: Pyrex Rod Specification					
Input	Value				
Enrichment	12.5 wt% B ₂ O ₃				
Boron-10 Loading	6.24 mg/cm				
Pyrex Density	2.25 g/cc				
Inner Tube Inner Radius	0.214 cm				
Inner Tube Outer Radius	0.231 cm				
Pyrex Inner Radius	0.241 cm				
Pyrex Outer Radius	0.427 cm				
Cladding Inner Radius	0.437 cm				
Cladding Outer Radius	0.484 cm				
Poison Height	360.68 cm				
Plenum Height above Poison	22.2 cm				
Axial Location of Poison	15.761 cm				
End Plug Height	≈ 2.54 cm				
Inner Tube Material	SS304				
Plenum Material	Helium				
Cladding Material	SS304				

Reference: CASL Benchmark for WBN1

Table 13: WABA Rod Specification						
Input	Value					
Poison Material	$B_4C-Al_2O_3$					
Boron-10 Loading	6.03 mg/cm					
Poison Density	3.65 g/cc					
Inner Clad Inner Radius	0.286 cm					
Inner Clad Outer Radius	0.339 cm					
Poison Inner Radius	0.353 cm					
Poison Outer Radius	0.404 cm					
Cladding Inner Radius	0.418 cm					
Cladding Outer Radius	0.484 cm					
Annulus Material	Moderator					
Cladding Material	Zircaloy-4					
Plenum/Gap Material	Helium					

- Copy w17x17_waba.inp as w17x17_pyrex.inp
- Insert Pyrex, compute k-eff
- Copy w17x17_waba.inp as w17x17_b4c.inp
- Insert B4C CR, compute k-eff
- Copy w17x17_waba.inp as w17x17_aic.inp
- Insert AIC CR, compute k-eff

Hint: these data imply B4C is 9.49 wt%

Table 8: RCCA Rod and Drive Specification							
Input	AIC	B ₄ C					
Composition	80/15/5%	100%					
	Ag/In/Cd	B_4C					
	(Lower)	(Upper)					
Poison Density	10.2 g/cc	1.76 g/cc					
Poison Radius	0.382 cm	0.373 cm					
Poison Height	101.6 cm	259.08 cm					
Cladding Inner Radius	0.	386 cm					
Cladding Outer Radius	0.484 cm						
Total Poison Height	360.68 cm						
Axial Location of Poison	17.031 cm						
(when fully inserted)							
Plenum Height above Poison	1	0.7 cm					
End Plug Height	\approx	1.9 cm					
Step Size	1.5875 cm						
Maximum number of steps	umber of steps 230						
Cladding Material SS304							
Plenum Material	Helium						

Table 6: Pyrex Rod Specification						
Input	Value					
Enrichment	12.5 wt% B ₂ O ₃					
Boron-10 Loading	6.24 mg/cm					
Pyrex Density	2.25 g/cc					
Inner Tube Inner Radius	0.214 cm					
Inner Tube Outer Radius	0.231 cm					
Pyrex Inner Radius	0.241 cm					
Pyrex Outer Radius	0.427 cm					
Cladding Inner Radius	0.437 cm					
Cladding Outer Radius	0.484 cm					
Poison Height	360.68 cm					
Plenum Height above Poison	22.2 cm					
Axial Location of Poison	15.761 cm					
End Plug Height	≈ 2.54 cm					
Inner Tube Material	SS304					
Plenum Material	Helium					
Cladding Material	SS304					

Reference: CASL Benchmark for WBN1

bu, bui, dbu cards t, ti, dti cards


```
31 8-
32 % maps
33 %
34 pinmap
35 I
36F F
37 F F F
38G F
      FG
39F F
      F
        F
           F
40 F
    F
      F
        F
           FG
41G F
      FGF
               F
42 F F
      FFF
             F
43 F F F F F F F F F
44 8
45 % state
46 8-
47 pow 40
48 bu 0 4 8 12 % burnup 0 is optional
49
50
     %equivalent to
51
52 pow
                    40
       40
             40
53bu 4000 8000 12000 : MWD/MTIHM
54
55
     %equivalent to
56
57 pow
         40
                 40
             40
      0 100 200 300 %time 0 is optional
58 t
59
60
```

Depletion

pow(er) p1 ... pi ... pN

bu b1 ... bi ... bN [:units=<u>GWD/MTIHM</u>|MWD/MTIHM]

- t t1 ... ti ... tN [:units=SECONDS|MINUTES|HOURS|DAYS|YEARS]
- power is required (units are MW/MTIHM)
- bu vs t
 - user preference
 - t is required for decay steps
 - t=0 or bu=0 is optional
- Example 1, Constant power:
 - only 1 power value is needed, but multiple values are accepted
 - multiple power values: required same number of bu (or t) values (ignoring the initial 0 value)


```
31 %-
32 % maps
33 8---
34 pinmap
35 I
36F F
37 F F F
38G F F G
39 F F F F F
40FFFF
         FG
     FGFFF
41 G F
42FFFFF
           F
43 F F F F F F F F F F
44 8-
45 % state
46 8-----
47 pow 40 35 30 0
48 t
     100 200 300 330
49
50
    %equivalent to
51
52 pow 40 35 30 0
53 dt
     100 100 100 330
54
55
     %equivalent to
56
57 pow
      40
           35
                30
                     0
58 dt 2400 2400 2400 720 : HOURS
59
60
```

Depletion

dbu b1 ... bi ... bN [: units=<u>GWD/MTIHM</u>|MWD/MTIHM]

dt t1 ... ti ... tN [:units=SECONDS|MINUTES|HOURS|DAYS|YEARS]

- dbu and dt do not support an initial 0 value
- multiple power values: required same number of dbu (or dt) values
- Example 2, Power history:

-8

- time-based input is required because of decay steps


```
44 8
45 % state
46 %
47 pow 40 40 40 40 20 20 20 20
48 bu
         4 8 12 13 16 20 24
49
50
     %equivalent to
51
52 pow 40 bu 1 4 8 12 % cycle 1
53 pow 20 bu 13 16 20 24 %cycle 2
54
55
     %equivalent to
56
57 pow 40 bu 1 4
                      8 12 %cycle 1
58 pow 20 t 350 500 700 900 %cycle 2
59
60
     %equivalent to
61
62 pow 40 bu 1 4 8 12 % cycle 1
                         12 %cycle 2
63 pow 20 bui 1 4
                      8
64
65
66
67
68
69
70
71
72
73
```

Depletion

- Multiple depletion histories are allowed
- bui, tui convenient card for cycle history

bui b1 ... bi ... bN [:units=<u>GWD/MTIHM</u>|MWD/MTIHM]

ti t1 ... ti ... tN [:units=SECONDS|MINUTES|HOURS|DAYS|YEARS]

- In the input, bui resets the origin to 0 for that card
- bui values are appended to previous history
- Similar behavior for ti

Depletion Methodology

Polaris uses predictor-corrector depletion:

- burnup step [bu, bu+dbu]:
 - 1. flux calculation at bu
 - 2. deplete (predictor step)
 - 3. flux calculation at bu+dbu
 - 4. re-deplete with new flux (corrector step)
 - 5. average isotopics at bu+dbu from step 2. and step 4.
- decay step [t, t+dt]:
 - 1. flux calculation at t
 - 2. decay calculation to t+dt

- Part 1
 - Copy w17x17_rev3.inp as w17x17_depl.inp
 - Power: 40 MW/MTIHM
 - Burnup steps (GWD/MTIHM): 0 0.1 5 10
 - Review depletion output
- Part 2 (on your own)
- copy w17x17_depl.inp as w17x17_depl2.inp
 - Power: 40 MW/MTIHM, 30 MW/MTIHM starting at 20 GWD/MTIHM
 - Burnup steps (GWD/MTIHM): 0 0.1 5 10 20 30

basis card deplete card

31 %%
32 % maps
33 88
34 pinmap
35 I
36F F
37 F F F
38GFFG
39 F F F F F
40FFFFG
41GFFGFFF
42 F F F F F F F F F
43FFFFFFFF
44 88
45 % state
46 %%
47 pow 40
48 bu 4 8 12
49 deplete ALL=no FUEL=yes CLAD=yes
50 state ALL : temp=590
51 COOL : dens=0.68
52 boron=1300
53 MOD : dens=0.71
54 boron=1300
55 temp=575
56 FUEL : temp=900
57 CLAD : temp=700
58 TUBE : temp=580
59 end
60

deplete card

deplete M_1 =yes|no M_2 =yes|no ... M_i =yes|no ... M_N = yes|no

- M_i Material name or Material class
 - yes material is depleted
 - no material is depleted
- system PWR defaults
 - deplete ALL=no FUEL=yes BP=yes
- system BWR defaults
 - deplete ALL=no FUEL=yes
- the ALL=no disables all the materials before explicit materials are enabled

XXX	31 8	3
XX	32 % maps	
XX	33 8	3
XXX	34 pinmap	
A A A	35 I	
1 ANA	36F F	
1 NUS	37 F F F	
1	38GFFG	
1	39FFFFF	
	40FFFFG	
	41GFFGFFF	
1	42 F F F F F F F F F	
	43 F F F F F F F F F F F F F F F F F F F	
	44 8	5
	45 % state	
	46 %	5
	47 pow 40	
	48 bu 4 8 12	
	49 basis ALL=no FUEL.2=yes	
	50 state ALL : temp=590	
	51 COOL : dens=0.68	
	52 boron=1300	
	53 MOD : dens=0.71	
	54 boron=1300	
	55 temp=575	
	56 FUEL : $temp=900$	
	57 CLAD : $temp=700$	
	58 TUBE : temp=580	
	59 end	
	60	

basis card

basis M_1 =yes|no M_2 =yes|no ... M_i =yes|no ... M_N = yes|no

- M_i Material name or Material class
 - yes the power referenced on the power card includes this material's power (assumed deposited locally)
 - no material is not part of the power basis
- Default: ALL=yes, meaning the power given on the power card is the power produced by all materials (power generated by fission and capture)
- If FUEL.2 is the basis material:
 - basis ALL=no FUEL.2=yes
 - the ALL=no disables all the materials before FUEL.2 is enabled

Exercises

- Takahama assembly depletion benchmark
 - copy taka.inp as taka_depl_rev0.inp

Guide

tube Fuel

rod Measured

rod Gd₂O₃

rod

- copy FUEL.1 -> FUEL.3
- duplicate pin card for FUEL.1 to FUEL.3 as pin B (for BASIS)
- duplicate mesh card for FUEL.1 to FUEL.3 (nr=1)
- modify pinmap to use new pin at circled location (SF97 sample)
- SF97 sample operating history (next slide)

Exercises

Table A.1: Results for actinides in assembly calculation-comparison to measured values (at discharge)

	Experimental measurement (Exp)	CEA-D	GRS	NEXIA	RRC-KI	VTT	Average (A)	RSD	(A-Exp)/Exp	Experimen uncertaint (1σ)
U234	1.872E+02	2.008E+02	1.977E+02	2.020E+02	2.073E+02	2.053E+02	2.026E+02	2%	8%	1%
U235	8.179E+03	8.235E+03	8.323E+03	8.720E+03	8.202E+03	8.288E+03	8.354E+03	2%	2%	N/A
U236	5.528E+03	5.285E+03	5.179E+03	5.270E+03	5.318E+03	5.232E+03	5.257E+03	1%	-5%	2%
U238	9.246E+05	9.265E+05	9.261E+05	9.270E+05	9.256E+05	9.267E+05	9.264E+05	0%	0%	N/A
Np237	6.604E+02	6.003E+02	6.664E+02	6.240E+02	6.480E+02	5.917E+02	6.261E+02	4%	-5%	10%
Pu238	3.199E+02	2.534E+02	2.841E+02	2.660E+02	2.677E+02	2.435E+02	2.629E+02	5%	-18%	1%
Pu239	6.037E+03	5.663E+03	5.951E+03	5.820E+03	5.958E+03	5.624E+03	5.803E+03	2%	-4%	N/A
Pu240	2.668E+03	2.672E+03	2.630E+03	2.550E+03	2.838E+03	2.697E+03	2.678E+03	4%	0%	N/A
Pu241	1.770E+03	1.601E+03	1.722E+03	1.640E+03	1.674E+03	1.639E+03	1.655E+03	2%	-6%	N/A
Pu242	8.246E+02	7.410E+02	7.721E+02	7.330E+02	7.790E+02	7.582E+02	7.567E+02	2%	-8%	N/A
Am241	5.311E+01	5.134E+01	5.482E+01	5.420E+01	5.295E+01	4.704E+01	5.207E+01	5%	-2%	2%
Am242m	1.233E+00	7.767E-01	9.929E-01	7.740E-01	8.764E-01	1.379E+00	9.597E-01	23%	-22%	10%
Am243	1.924E+02	1.622E+02	1.648E+02	1.550E+02	1.712E+02	1.298E+02	1.566E+02	9%	-19%	1%
Cm242	2.044E+01	2.231E+01	2.210E+01	2.280E+01	2.334E+01	2.237E+01	2.258E+01	2%	10%	10%
Cm243	8.721E-01	6.061E-01	5.949E-01	6.130E-01	6.262E-01	5.719E-01	6.024E-01	3%	-31%	2%
Cm244	8.810E+01	6.304E+01	5.949E+01	5.610E+01	5.831E+01	1.021E+02	6.781E+01	26%	-23%	2%
Cm245	6.042E+00	3.823E+00	3.109E+00	3.210E+00	3.176E+00	7.446E+00	4.153E+00	40%	-31%	2%
Cm246	7.440E-01	4.494E-01	3.365E-01	3.550E-01	3.728E-01	7.933E-01	4.614E-01	37%	-38%	1%
Cm247	1.098E-02	5.268E-03	4.182E-03	3.320E-03	4.537E-03	1.064E-02	5.590E-03	47%	-49%	10%

https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-1.pdf additional data at: http://info.ornl.gov/sites/publications/files/Pub23359.pdf

Days	Status	Power (W/gU)
385	Full power	38.6
88	Downtime	0
402	Full power	38.6
62	Downtime	0
406	Full power	38.6
pow 38.6 d	t 1 25 25 50 50	50 50 50 84
pow 0 d	t 88	
pow 38.6 d	t 1 50 50 100 10	0 101
pow 0 dt 6	2	
pow 38.6 d	t 1 50 50 100 10	0 105

- use depletion history for FUEL.3 basis shown here
- determine mass fraction of FUEL.3 IHM to system IHM on taka_depl_rev0.out
- Instructor Demo
 - determine file position of FUEL.3 on taka_depl_rev0.f71
 - setup taka_opus_rev0.inp to generate isotopics
 - compare with taka.xls
 OAK

box card system BWR

BWR Geometry Basics

- A. lattice pitch
- B. wide gap (north and west sides)
- C. in-channel span
- D. narrow gap (east and south sides)
- E. channel box thickness
- Must know 4 of 5 from design documentation
- The 5th value is computed from A=B+C+D+2E
- Control blades are inserted into the wide gaps
- Detectors are inserted into the narrow gaps
- Typical values:
 - lattice pitch: 15.24 cm
 - channel box thickness: 80 mil (0.2032 cm)

1=polaris_6.3 2 8------8 3 % general options _____ 5 title "BWR 7x7" 6 lib "broad n" 7 system BWR 8 %-----% **9** % geometry (lattice pitch=15.24) **10** %------% 11 geom bwr7x7 : ASSM 7 1.88 12 hgap 0.47498 0.9525 **13box** 0.2032 0.0 6.70306 14 %------% 15 % fuel material (2.93 enr, 10.32 g/cc) 16 %-----17 comp c e293 : UOX 2.93 18 mat FUEL.1 : c_e293 10.32 19 %-----20 % pins 21 %-----22 pin 1 : 0.61 0.62 0.715 23 : FUEL.1 GAP CLAD 24 8-----25 % state 26 %-----27 state ALL : temp=600 28 MOD : void=0 29 COOL : void=40 30 end

GE 7x7 Example (ge7x7_rev0.inp)

Source: LWR UAM Benchmark NEA/NSC/DOC(2013)7

- A. lattice pitch (15.24 cm)
- B. wide gap (0.9525 cm)
- C. in-channel span (?)
- D. narrow gap (0.47498 cm)
- E. channel box thickness (0.2032 cm)
- \Rightarrow C = A-B-D-2E = 13.40612 cm
- Polaris input requirements:
 - narrow gap (first entry on hgap)
 - wide gap (second entry on hgap)
 - channel box thickness (first entry on box)
 - $-\frac{1}{2}$ of in-channel span (third entry on **box**)
 - lattice pitch is not needed

system BWR

Material	Composition	Plot Color	Additional info	
Unless noted	l otherwise, T=557K,	nr=1, ns=8, nf=2,	, nd=1	
COOL.1	H2O	cyan	pin coolant material, nr=2	
COOL.2	H2O	aquamarine	extra pin coolant material	
MOD.1	H2O	blue	Wide hgap material, internal moderator for water rods	
MOD.2	H2O	purple	Narrow hgap material, extra internal moderator	
Water materi	als initialized to boror	n = 0 ppm, void=0), liquid_dens= 0.743 g/cc, vapor_dens= 0.0353 g/cc	
FUEL.1	n/a	red	depletable (deplete), auto-expanded (shield)	
CAN.1	n/a	n/a	channel box material	
CNTL.1	AIC	pink	auto-expanded (shield)	
CNTL.2	B4C	cadetblue	auto-expanded (shield)	
CLAD.1	ZIRC2	lime		
TUBE.1	ZIRC2	yellow	optional for guide tubes	
GAP.1	FILLGAS	rosybrown		
STRUCT.1	SS304	goldenrod	blade sheath/central support material	ID bora

	HHT		
XXX	1	=pola	aris_6.3
	2	8	*
X	3	* ge i	neral options
4	4	응	%
	5	title	e "BWR 7x7"
	6	lib '	'broad_n"
	7	syste	em BWR
	8	응	
	9	* ge o	ometry (lattice pitch=15.24)
	10	응	
	11	geom	bwr7x7 : ASSM 7 1.88
	12	hgap	0.47498 0.9525 : MOD.1 MOD.2
	13		
	14	box	0.2032 0.0 6.70306
	15		
	16		<i>%equivalent to</i>
	17		-
	18	box	thick=0.2032
	19		rad=0.0
	20		hspan=6.70306
	21		MBox=CAN.1
	22		
	23		%equivalent to
	24		-
	25	box	0.2032 hspan=6.70306
	26		-
	27		
	28		
	29		
	30		

box thick=Real [rad=Real] [hspan=Real] [Mbox=MNAME]

- thick channel box thickness (cm)
 - required

- must be > 0
- rad inner corner radius (cm)
 - optional
 - must be >= 0
 - default: 0
- hspan half in-channel span (cm)
 - optional
 - must be >= 0
 - default: N*pin_pitch/2
- Mbox channel box material
 - optional
 - default: CAN.1 with sys BWR (which is ZIRC2)

box part 1

Exercise 1 of 2

Source: LWR UAM Benchmark NEA/NSC/DOC(2013)7

- run ge7x7_rev0.inp
 - should have channel box radius as 0.0
- copy ge7x7_rev0.inp -> ge7x7_rev1.inp
- modify channel box radius to be 0.9652
- run ge7x7_rev1.inp
- compare transport k-eff

box part 2

single region channel box definition

box thick=Real [rad=Real] [hspan=Real] [Mbox=MNAME]

- multiregion channel box definition
 box thick=Real [rad=Real] [hspan=Real] [Mbox=MNAME]
 [: t2 t3 ... tN]
 [: a2 a3 ... aN]
 [: b2 b3 ... bN]
- t2 t3 ... tN channel box thickness for region 2, 3, ... N
- regions 2 through N can have "cutout" regions (cm)
- a2 a3 ... aN distance from centerline to bottom of cutout region 2, 3, ... N (cm)
- b2 b3 ... bN distance from centerline to top of cutout region 2, 3, ... N (cm)
- Rules:
 - b2 >= a2, b3 >= a3, …
 - − a3 >= b2, a4 >= b3, …
 - i.e., cutout regions cannot get smaller moving from region 2 to N

Exercise 2 of 2

- copy ge7x7_rev1.inp -> ge7x7_rev2.inp
- add two additional regions
 - 1. 20 mil thick a = 0.5 pitch, b = 1 pitch
 - 2. 20 mil thick a = b = 2.5 pitch
- run ge7x7_rev2.inp
- Compare transport k-eff

box part 3

multiregion channel box definition
 box thick=Real [rad=Real] [hspan=Real]
 [Mbox=MNAME]

[:
$$t_2 t_3 \dots t_N$$
]
[: $a_2 a_3 \dots a_N$]
[: $b_2 b_3 \dots b_N$]
[: $m_2 m_3 \dots m_N$]
[: $r_2 r_3 \dots r_N r_{out}$]

- m_i material for region i
 - default is m_{i-1}
- \mathbf{r}_{i} inner corner radius for region i
 - default is 0 if \mathbf{r}_{i-1} is 0, otherwise $\mathbf{r}_{i-1} + \mathbf{t}_{i-1}$
 - \mathbf{r}_{out} outer corner radius for final region
 - default is 0 if r_N is 0, otherwise $r_N + t_N$

1=polaris_6.3
3 * general options
4 %
5 title "BWR 7x7"
6 lib "broad n"
7 system BWR
8 88
9 % geometry (lattice pitch=15.24)
11 geom bwr/x7 : ASSM 7 1.88
$12 \text{ hgap } 0.47498 \ 0.9525$
14 cdot 0.0508 0.0508
15 : 0.94 4.7
16 : 1.88 4.7
17 : COOL.1 CNTL.1 just for fun
18 : 1.1684 1.2192 0.0 Just for full
19 %%
20 % fuel material (2.93 enr, 10.32 g/cc)
22 **
23 mat FUEL 1 : C e293 10 32
24 %
25 % pins
26 88
27 pin 1 : 0.61 0.62 0.715
28 : FUEL.1 GAP CLAD
29
130

box part 3

SQR option on pin card size option on pin card

1=polaris 6.3
2 title "W17x17"
3 lib "broad n"
4 system PWR
5 geom W17 : ASSM 5 1.26
6 **
7 % comps and mats
8 8
9 comp c e31 : UOX 3.1
10 mat FUEL.1 : c e31 10.26
<u> </u>
12 % pins
13 8
14 pin A : 0.4096 0.418 0.475
15 : FUEL.1 GAP.1 CLAD.1
16 pin B 2 : 0.83 0.88 : MOD.1 TUBE.1
17 : CIR CIR
18 pin C 3 : 1.26 1.46 : MOD.1 TUBE.1
19 : SQR (0.3) SQR
20 pin D : 0.4 0.475
21 : FUEL.1 CLAD.1
22 : CIR SOR
23 pinmap
24 A A A B B
25 AAABB
26 CCCAA
27 CCCDD
28 CCCDD
29 end
30

2

square pins

1=polaris 6.3
2 title "W17x17"
3 lib "broad n"
4 system PWP
5 grow W17 + ASSM 5 1 26
6 9
7 & compa and mate
$3 \text{ comp } C_{e31}$: 00X 3.1
10 mat FOEL.1 : C_eSI 10.26
11 6
12 * pins
14 pin A : 0.4096 0.418 0.475
15 : FUEL.1 GAP.1 CLAD.1
16 pin B 2 : 0.83 0.88 : MOD.1 TUBE.1
17 : CIR CIR
18 pin C 3 : 1.26 1.46 : MOD.1 TUBE.1
19 : SQR(0.3) SQR
20 pin D : 0.4 0.475
21 : FUEL.1 CLAD.1
22 : CIR SQR
23 pinmap
24 AAABB
25 AAABB
26 CCCAA
27 CCCDD
28 CCCDD
29 end
30

square pins

pin PINID [size=Real] : $r_1 \quad r_2 \quad \dots \quad r_N$: $M_1 \quad M_2 \quad \dots \quad M_N \quad [M_{out}]$ [: $S_1 \quad S_2 \quad \dots \quad S_N$]

- S_i shape for zone i
 - CIR for circle
 - SQR(X) for square, X is the inner corner radius
 - default shape is CIR, default value of X is 0.0

mesh MCLASS|MNAME : [nr=Int] [ns=Int] [nf=Int] [nd=Int] [nx=Int] [ny=Int]

- nx number of x divisions, default 1
- ny number of y divisions, default 1

ATRIUM10 Exercise

- copy ge7x7_rev1.inp -> atrium10_rev1.inp
- change N from 7 to 10
- change pin pitch to 1.34 cm
- change box and gap based on the following design information
 - lattice pitch: 15.24 cm
 - channel box thickness: assume 0.3048 cm
 - channel box inner corner radius: assume 0.5 cm
 - half in-channel span: assume 5* pin_pitch —
 - wide/narrow gap: assume uniform _
- Assumed fuel pin info:
 - 2.93% enr, 10.32 g/cc
 - 0.4335 cm fuel radius
 - 0.442 cm gap radius
 - 0.5025 cm clad radius

- Water box info:
 - 3.36 cm inner width
 - 0.07 cm water box thickness +
 - size=3 \rightarrow
 - centered at (6,6) position

1=polaris_6.3
2 title "W17x17"
3lib "broad_n"
4 system PWR
5 opt GEOM NumPlotRays=800
6 geom W17 : ASSM 4 1.26
7 88
8 % comps and mats
9 88
10 comp c_e31 : UOX 3.1
11 mat FUEL.1 : c_e31 10.26
12 **
13 % pins
14 **
15 pin A : 0.4096 0.418 0.475
16 : FUEL.1 GAP.1 CLAD.1
17 pin B 1.4 : 0.83 0.88 : MOD.1 TUBE.1
18 pin C 2.6 : 1.26 1.46 : MOD.1 TUBE.1
19 pinmap
20 AABB
21 CC_B
22 CCCA
23 CCCA
24 end
25
26
27
28
29
30

5

Noninteger pin size

1.4 * half_pitch

1=polaris 6.3
2 title "W17x17"
3 lib "broad n"
4 system PWR
5 opt GEOM NumPlotRays=800
6 geom W17 : ASSM 4 1.26
7 **
8 % comps and mats
9 88
10 comp c_e31 : UOX 3.1
11 mat FUEL.1 : c_e31 10.26
12 88
13 % pins
14 88
15 pin A : 0.4096 0.418 0.475
16 : FUEL.1 GAP.1 CLAD.1
17 pin B 1.4 : 0.83 0.88 : MOD.1 TUBE.1
18 pin C 2.6 : 1.26 1.46 : MOD.1 TUBE.1
19 pinmap
20 AABB
21 C C _ 🕀
22 CCCA
23 CCCA
24 end
25
26
27
28
29
30

6

Noninteger pin size

pin PINID [size=Real]

```
: r_1 r_2 ... r_N

: M_1 M_2 ... M_N [M_{out}]

[: S_1 S_2 ... S_N]
```

Pin guidelines if **size** is noninteger:

- The pin fills a ceil(size) x ceil(size) subarray in the pinmap
 - Example: size=2.6 fills a 3x3 subarray in the pinmap
- The pin must share a pinmap location with another pin with noninteger size
 - Example: pin C and pin B share a common location at (row 2, col 3)
- The common location MUST be "_" in the pinmap

Noninteger pin size

To determine the pin center (e.g. the size=2.6 pin):

- 1. Find the common pinmap location
- 2. Go to farthest corner from the common pinmap location
- 3. Compute d=size*half_pitch
- 4. From the farthest corner, move distance d in the x and y direction toward common pinmap location
- Common scenario
 - Identical water rods with 1 < size < 2
 - Pin pitch (P)
 - Outer radius (R)
 - Distance between water rods (D)
 - size = 3 (2R+D)/P/sqrt(2)

GE 9x9 Exercise

- copy ge7x7_rev1.inp to ge9x9_rev0.inp
- change N from 7 to 9
- change pin pitch to 1.437 cm
- change box and gap based on the following assumed design information
 - lattice pitch: 15.24 cm
 - channel box thickness: assume 0.3048 cm
 - channel box inner corner radius: assume 0.5 cm
 - half in-channel span: assume 4.5*pin_pitch
 - wide/narrow gap: uniform
- Assumed Fuel pin info:
 - 2.93% enr, 10.32 g/cc
 - 0.4775 cm fuel radius
 - 0.5475 cm clad radius
 - No gap

- Water pin info:
 - 1.16 cm inner radius
 - 1.259 cm outer radius
 - common location at (5,5)
 - assume D=0
 - size = 3 (2R+D)/P/sqrt(2)

defines interior cross geometry

1 =polaris_6.3
3 * general options
5 lib "broad_n"
6 SYS BWR
7 **
8 * geometry
9 **
10 geom myBWR : ASSM 8 1.33
11 hgap 0.9
12 box 0.2 0.5 5.92
13 cross 0.6 0.1
15 % fuel material (2.93 enr, 10.32 g/cc)
17 comp c_e293 : UOX 2.93
18 mat FUEL.1 : c_e293 10.32
20 * pins
22 pin 1 : 0.39 0.40 0.46
23 : FUEL.I GAP.I CLAD.I
24 mesh COOL nr=1 ns=1
20 8 STATE
26 State ALL : temp=600 FUEL : temp=900
$29 \qquad \text{MOD} : \text{VOId}=0 \text{COOL} : \text{VOId}=40$
su ena

cross


```
1=polaris_6.3
           % general options
 8-----8
5 lib "broad n"
6 sys BWR
   -----%
8 % geometry
8 * geometry
9 *-----*
10 geom myBWR : ASSM 8 1.33
11 hgap 0.9
12 box 0.2 0.5 5.92
13 cross 0.6 0.1
14 8------ 8
15 % fuel material (2.93 enr, 10.32 g/cc)
16 8------ *
17 comp c e293 : UOX 2.93
18 mat FUEL.1 : c_e293 10.32
20 % pins
21 %-----%
22 pin 1 : 0.39 0.40 0.46
23
     : FUEL.1 GAP.1 CLAD.1
24 mesh COOL nr=1 ns=1
26 % state
27 8------ *
28 state ALL : temp=600 FUEL : temp=900
     MOD : void=0 COOL : void=40
29
30 end
```

cross hwidth=Real Ithick=Real

- **hwidth** half width of the interior cross region (cm)
 - required
 - must be > 0
- Ithick liner thickness (cm)
 - required
 - must be >= 0
 - although required, liner does not show up unless cross structure is specified
- hwidth*2 represents the spacing between 4 subchannels
- initially filled with COOL.1

cross

SVEA Exercise 1

National Laboratory

- change N from 7 to 10
- change pin pitch to 1.24 cm
- initialize cross to have hwidth=0.28 cm and lthick=0.08 cm
- change box and gap based on the following
 - lattice pitch: 15.24 cm
 - channel box thickness: 0.11 cm
 - channel box inner corner radius: 0.9 cm
 - half in-channel span: 6.87
 - wide/narrow gap: assume uniform
- fuel pin info:

 \rightarrow

- assume 2.93% enr, 10.32 g/cc
- 0.4095 cm fuel radius
- 0.418 cm gap radius
- 0.481 cm clad radius

1 =polaris_6.3 2 **
3 % general options
5 lib "broad_n"
6 sys BWR 7 %
8 % geometry
9 \$
10 geom myBWR : ASSM 8 1.33
11 hgap 0.9
$\frac{12 \text{ box } 0.2 \ 0.5 \ 5.92}{12 \text{ cmass } 0.6 \ 0.1}$
$14 \cdot 0.00 \ 11.84$
15 : 0.40 0.40
16 *
17 % fuel material (2.93 enr, 10.32 g/cc)
18 88
$19 \text{ comp } c_{e293} : UOX 2.93$
20 mat FUEL.I : C_e293 10.32
22 % pins
23 8
24 pin 1 : 0.39 0.40 0.46
25 : FUEL.1 GAP.1 CLAD.1
26 mesh COOL nr=1 ns=1
27 end 28
29
30

cross

1 = polaris_6.3
3 % general options
4 %% 5 lib "broad n"
6 sys BWR
8 % geometry
9 8
11 hgap 0.9
12 box 0.2 0.5 5.92
13 cross 0.6 0.3 14 : 0.00 11.84
15 : 0.40 0.40
16 \$
18 88
19 comp c_e293 : UOX 2.93
20 mat FUEL.1 : c_e293 10.32
22 % pins
23 **
24 pin 1 : 0.39 0.40 0.46
26 mesh COOL nr=1 ns=1
27 end
28
30

Cross

cross hwidth=Real Ithick=Real [: $x_1 x_2 ... x_N$] [: $y_1 y_2 ... y_N$]

- x_i x-coordinate of vertex i (cm)
- y_i y-coordinate of vertex i (cm)
- user builds horizontal cross west to east in the top (north) half of the assembly
 - $-x_1$ should be 0.0
 - $-x_N$ should be in-channel span
 - the origin (shown on previous slide)
 - along the horizontal center line of the in-channel region
 - flush with inner west wall of channel box
- horizontal half-cross reflected to the south
- horizontal cross reflected diagonally to vertical cross

SVEA Exercise 2

National Laboratory

- copy svea_rev0.inp to svea_rev1.inp
- create empty **pin**: pin E : 0.62 : COOL.1 : SQR
- add 3x3 cartesian mesh to COOL.1
- create 10x10 pinmap with empty pins in locations shown on left
- modify cross to have 0.4 cm moderator section (0.2 for half coolant width):
 - cross 0.28 0.08
 - : 0.0 13.74
 - : 0.2 0.2

National Laboratory

- Common Scenario: Diamond structure in the middle
- Given:
 - diamond width: D
 - half in-channel span: H
 - half coolant width: C (typically hwidth-lthick)
- The following three points need to be defined in the middle of the cross card:
 - Z = D/sqrt(2)
 - 1. x=H-Z+C, y=C
 - 2. x=H, y=Z
 - 3. x=H+Z-C, y=C
- Empty Pin Definition
 - pin PINID : half_pitch : COOL.1 : SQR
 - mesh COOL.1 nx=N ny=N

Extra Example 2

See Polaris Appendix for complete details

displacement maps for fuel pins

<pre>1 =polaris_6.3 2 title "W17x17" 3 lib "broad_n" 4 system PWR 5 geom W5x5 : ASSM 5 1.26 6 comp c_e31 : UOX 3.1 7 mat FUEL.1 : c_e31 10.26</pre>											
8	8 pin F : 0.4096 0.475 : FUEL.1 CLAD.1										
10	3 mesh COOL nr=1 ns=-4 10 mesh FUEL nr=5 ns=1										
11	11 mesh CLAD ns=1										
12	.2 88										
13	* disp	lacem	ent i	naps							
14	8						8				
15	dxmap										
16	0.0	0.0	0.0	0.0	0.0						
17	0.0	0.2	0.0	0.0	-0.2						
18	0.0	0.0	0.0	0.0	0.0						
19	0.0	0.0	0.0	0.0	0.0						
20	0.0	0.0	0.0	0.0	0.0						
21	dymap	0.0	• •	0.0	0.0						
22	0.0	0.0	0.0	0.0	0.0						
23	0.0	0.0	0.0	0.0	0.0						
25	0.0	0.2	0.0	0.0	0.0						
26	0.0	0.0	0.0	-0.1	0.0						
27											
28											
29											
30	end										

2

dxmap dymap part 1

1=polaris 6.3 2 title "W17x17" 3 lib "broad n" 4 system PWR 5 geom W5x5 : ASSM 5 1.26 6 comp c e31 : UOX 3.1 7 mat FUEL.1 : c e31 10.26 8 pin F : 0.4096 0.475 : FUEL.1 CLAD.1 9 mesh COOL nr=1 ns=-4 10 mesh FUEL nr=5 ns=1 11 mesh CLAD ns=1 **13** % displacement maps 14 8 15 dxmap 16 0.0 0.0 0.0 0.0 0.0 0.0 - 0.217 0.0 0.2 0.0 0.0 0.0 18 0.0 0.0 0.0 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 0.0 0.0 21 dymap 22 0.0 0.0 0.0 0.0 0.0 23 0.0 0.0 0.0 0.0 0.0 24 0.0 0.0 0.0 0.0 0.0 25 0.0 0.2 0.0 0.0 0.0 0.0 0.0 26 0.0 - 0.10.0 27 28 29 30 end

dxmap dymap part 1

 $\begin{array}{l} \text{dxmap } x_1 \ x_2 \ \dots \ x_N \\ \text{dymap } y_1 \ y_2 \ \dots \ y_N \end{array}$

- **x**_i displacement from pin center in the x-direction (cm)
- **y**_i displacement from pin center in the x-direction (cm)
- full, diagonal, quarter, and octant symmetry allowed
- dxmap size must equal dymap size
- dxmap and dymap size can be different than pinmap size
- some restrictions on the displacement value based on map symmetry
- for pins with noninteger size
 - see previous slides to determine natural pin center
 - to displace, choose the location farthest from the common pinmap location
- always review visualization to confirm intended effect (beware overlapping pins)

1=polaris 6.3 2 title "W17x17" 3 lib "broad n" 4 system PWR 5 geom W5x5 : ASSM 5 1.26 6 comp c e31 : UOX 3.1 7 mat FUEL.1 : c e31 10.26 8 pin F : 0.4096 0.475 : FUEL.1 CLAD.1 9 mesh COOL nr=1 ns=-4 10 mesh FUEL nr=5 ns=1 11 mesh CLAD ns=1 ------12 % 13 % displacement maps 14 15 dxmap 0.0 16 17 0.0 0.2 0.0 0.0 18 0.0 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 21 dymap 22 0.0 23 0.0 -0.2 24 0.0 0.0 0.0 0.0 0.2 25 0.0 0.0 26 0.0 0.0 0.0 -0.1 0.0 27 28 end 29 30

dxmap dymap part 2

- modify water rod to be size 1.5
- add displacement maps to move the water rod back to same location as before
- confirm answers are identical

GE 9x9 Exercise 2/2

- Copy ge9x9_rev0.inp to ge9_bow.inp
- Assume under a channel bow condition that the channel box has shifted 100 mil (0.254 cm) to the west and north.
- wide gap decreases by 0.254 cm
- narrow gap increases by 0.254 cm
- the pins do not bow
- to keep the pins in the same position as the nominal case, use dxmap and dymap to shift the pins 100 mil east and south
- NOTE: need a full 9x9 map for both

define control blade geometry

1 =polaris_6.3 2 lib "broad n" 3 sys BWR 4 geom myBWR : ASSM 7 1.85 5 hgap 0.55 1.25 : MOD.2 MOD.1 6 box 0.2 7 pin 1 : 0.61 0.71 : FUEL.1 CLAD.1 8 mesh FUEL ns=1 9 mesh COOL nr=1 ns=1 10 mesh MOD nf=1 nd=1 ns=1 11 pinmap 12 1 1 1 1 1 1 1111 15 16 comp c e293 : UOX 2.93 17 mat FUEL.1 : c_e293 10.32 18 % 19 % control blade 20 8-21 pin B : 0.4 0.5 : CNTL.1 STRUCT.1 MOD.1 22 23 control blade1 : BLADE 0.8 0.3 3.0 24 : B : 10.6 25 : 10 27 state blade1 : in=yes 28 29 30 end


```
=polaris 6.3
 2 lib "broad n"
 3 sys BWR
 4 geom myBWR : ASSM 7 1.85
 5 hgap 0.55 1.25 : MOD.2 MOD.1
 6 box 0.2
 7 pin 1 : 0.61 0.71 : FUEL.1 CLAD.1
 8 mesh FUEL ns=1
 9 mesh COOL nr=1 ns=1
10 mesh MOD nf=1 nd=1 ns=1
11 pinmap
    1 1
    1 1 1
16 comp c e293 : UOX 2.93
17 mat FUEL.1 : c e293 10.32
19 % control blade
21 pin B : 0.4 0.5
         : CNTL.1 STRUCT.1 MOD.1
23 control blade1 : BLADE 0.8 0.3 3.0
                  : B
                  : 10.6
                  : 10
27 state blade1 : in=yes
30 end
```

blade

control : BLADE

hwgthck=Real sththck=Real csInth=Real

- : $ID_1 ID_2 ... ID_N$: $L_1 L_2 ... L_N$: $N_1 N_2 ... N_N$
- hwgthck half blade wing thickness (cm)
 - required, must be > 0
- sththck blade sheath thickness (cm)
 - required, must be >= 0
- csInth central support length (cm)
 - required, must be >= hwgthck
- ID_i PINID or SLABID for section i
- L_i length of section i (cm)
- N_i number of pins or slab regions in section i

Blade Exercise 1/3

- ge7x7_rev1.inp to blade_rev0.inp
- create diagonal pinmap, fill with "1"
- create blade pin B
 - B4C radius: 0.18 cm (CNTL.2)
 - SS304 radius: 0.24 cm (STRUCT)
 - outer zone: MOD.1
- create control blade (name blade1)
 - half wing thickness 0.4 cm
 - sheath thickness 0.1 cm
 - central support length 2.0 cm
 - 10.08 cm section length
 - 21 pins
- add command to state card to insert blade1

Blade Exercise 2/3

- blade_rev0.inp to blade_rev1.inp
- add new blade pin A
 - AIC radius: 0.18 cm (CNTL.1)
 - SS304 radius: 0.24 cm (STRUCT)
 - outer zone: MOD.1
- create control blade (name blade2)
 - Same as blade1, but the final 3 pins are AIC
 - 10.08 cm *(18/21) pin B
 - 10.08 cm *(3/21) pin A
- add command to state card to insert blade2


```
=polaris 6.3
 2 lib "broad n"
 3 sys BWR
 4 geom myBWR : ASSM 7 1.85
 5 hgap 0.55 1.25 : MOD.2 MOD.1
 6 box 0.2
 7 pin 1 : 0.61 0.71 : FUEL.1 CLAD.1
 8 mesh FUEL ns=1
 9 mesh COOL nr=1 ns=1
10 mesh MOD nf=1 nd=1 ns=1
11 pinmap
12
    1 1
    1 1 1
     1 1 1 1
16 comp c e293 : UOX 2.93
17 mat FUEL.1 : c e293 10.32
19 % control blade
20 8
21 pin B : 0.4 0.5
         : CNTL.1 STRUCT.1 MOD.1
22
23 control blade1 : BLADE 0.8 0.3 3.0
                   : B
                   : 10.6
                   : 10
27 state blade1 : in=yes
28
29
30 end
```

blade

control : BLADE

hwgthck=Real sththck=Real csInth=Real [sthmat=MNAME] [csmat=MNAME] [hcsthck=Real] [wgcrv=Real] : ID1 ID2 ... IDN : L1 L2 ... LN : N1 N2 ... NN

- sthmat sheath material (STRUCT.1)
- **csmat** central support material (STRUCT.1)
- hcsthck half central support thickness (cm)
 - must be > 0 and must be <= hwgthck</p>
 - default is hwgthck
- wgcrv wing tip radius
 - must be >=0,
 - default is 0,
 - 0 means straight edge

Blade Exercise 3/3

- blade_rev0.inp to blade_rev2.inp
- create control blade (name blade3)
 - same as blade1, but
 - hcsthck is 0.4 cm
 - wgcrv is 0.4 cm
- add command to state card to insert blade3

Slab will be covered in reflector material

pin B	: 0.1	.8 0.24	4 : (CNTL.2	STRUCT		10D.1	-		
slab C	: 0.2	2 0.1	CN	TL.1 S	TRUCT					
control	blac	leX BL	ADE (0.4 0.	1 2.0	:	В	С	В	
						:	5.0	3.0	2.5	
						:	7	1	3	

branch card

Lattice Physics

- Lattice Physics: goal is to generate few-group cross sections for core calculations
 - Require **branch** calculations
 - instantaneous change in state variable at a given burnup
 - Requires **history** calculations
 - BWR fuel depleted at 0% void vs 40% void at constant power
 - Requires **reflector** calculations
- 1000s of statepoint calculations required per core calculation

- Nodal Simulators:
 - Determines few-group cross section at each "node" based on the node state:
 - Fuel temperature
 - Coolant temperatue
 - Coolant density
 - Boron concentration
 - Control rod/blade insertion
 - Node Dimension:
 - BWR: assembly width (x,y) x 6" (z)
 - PWR: ¼ assembly width (x,y) x 6"(z)
 - Each nodal simulator has their own logic to interpolate the cross sections

Branching

```
53 % state
55 % HFP as base state
56 state ALL : temp=600
        FUEL : temp=900
57
        COOL : dens=0.7 boron=600
58
59 read branch simple
   %branch 1 - high TF
60
61 add FUEL : temp=1200
62 %branch 2 and 3 - low/high PC
    add COOL : boron=0 1500
63
64
  %branch 4 AIC insertion
    add AIC MAP : in=yes
65
66 end branch
67 opt PRINT Xfile16=yes
68 end
69
70
71
72
73
74
75
76
77
78
79
80
81
```

- read branch BNAME/end branch encloses a set of "instantaneous" state changes
 - BNAME name of the branch set

add card

- material state branch
- add MCLASS/MNAME : prop=X Y Z
- control or insert state branch
- add INAME : in=true|false or
- add INAME : in=yes|no
- To create the FG XS file for PARCS

opt PRINT XFile16=yes

Exercise

- copy from starter directory pb2_starter.inp to pb2_branch.inp
- add a 1200 K fuel branch
- add void branches 0%, 40%, and 70%
- Note: nominal state is 40% void
- view output

Exercise

```
140
   Case: GE 7x7
141
142
   Library: /Users/m8j/build/p/INSTALL/data/scale.rev04.xn56v7.1
143
144
145
   Input echo written to file {/Users/m8j/Documents/Polaris/ORNL training/exercises/pb2 branch.idc}.
147
148

    4 statepoints

149 Summary of Calculations
150
  Total number of statepoint calculations
                                                               = 4
                                                                              1. Nominal (40 void)
<sup>152</sup> Total number of time-dependent histories
                                                               = 1
153
154 History 1
                                                                              2. 1200 K
                                                               = 'Base'
155
    Number of time-dependent calcs
                                                               = 1
156
    Number of instantaneous branches
                                                                = 3
                                                                              3. 0 void
157
    Number of statepoints
                                                               = 4
158
159
                                                                              4. 70 void
```

Polaris skips branches that are identical to nominal state. In this case, the 40% void branch

Branching

```
53 %
    state
54
55 %HFP as base state
56 state ALL : temp=600
57
        FUEL : temp=900
        COOL : dens=0.7 boron=600
58
59
     AIC MAP : in=no
60
61 read branch cr
    add AIC MAP : in=yes
62
63 end branch
64
65 read branch cobranch
66
    %syncronize changes to DC, TC, and CR
    add COOL : dens=0.6 temp=630 AIC MAP : in=no
67
    add COOL : dens=0.8 temp=570 AIC MAP : in=no
68
    add COOL : dens=0.6 temp=630 AIC MAP : in=yes
69
70
    add COOL : dens=0.8 temp=570 AIC MAP : in=es
71
72
       % equivalent to
73
74
    add COOL : dens=0.6 0.8 0.6 0.8
75
                temp=630 570 630 570
76
     AIC MAP : in= no no yes yes
77 end branch
78 pow 40 bu 1 2
79 opt PRINT Xfile16=yes
80 end
```

- Multiple branch blocks are allowed
 - convenient to organize branches
- Branch definitions can perturb multiple state properties at the same time
- Two approaches to define a table of branch calculations
 - 1. row represents a branch, columns represent the state properties
 - 2. row represents the state properties, columns represent a branch

Branching

```
53 8
    state
54
55 %HFP as base state
56 state ALL : temp=600
57
         FUEL : temp=900
        COOL : dens=0.7 boron=600
58
59
     AIC MAP : in=no
60
61 read branch cr
    add AIC MAP : in=yes
62
63 end branch
64
65 read branch cobranch
66
    %syncronize changes to DC, TC, and CR
    add COOL : dens=0.6 temp=630 AIC MAP : in=no
67
    add COOL : dens=0.8 temp=570 AIC MAP : in=no
68
    add COOL : dens=0.6 temp=630 AIC MAP : in=yes
69
70
    add COOL : dens=0.8 temp=570 AIC MAP : in=es
71
72
        % equivalent to
73
74
    add COOL : dens=0.6 0.8 0.6 0.8
75
                temp=630 570 630 570
76
     AIC MAP : in= no no yes yes
77 end branch
78 pow 40 bu 1 2
79 opt PRINT Xfile16=yes
80 end
```

- Polaris calculation order:
 - Nominal state, Bu=0
 - Nominal state, Bu=1
 - Nominal state, Bu=2
 - Branch 1 ... 5, Bu=0
 - Branch 1 … 5, Bu=1
 - Branch 1 ... 5, Bu=2
- Txtfile16 order:
 - Nominal state, Bu=0
 - Branch 1 ... 5, Bu=0
 - Nominal state, Bu=1
 - Branch 1 … 5, Bu=1
 - Nominal state, Bu=2
 - Branch 1 ... 5, Bu=2

- copy w17x17_aic.inp to w17x17_branch.inp
- simplify: replace MOD.1 with COOL.1
- simplify: replace TUBE with CLAD
- change nominal boron to 700 ppm
- add opt PRINT XFile16=yes
- create branch block table with the following data
- nominal branch
- 2 TF Branches (1200, 600 K)
- 2 PC Branches (1500, 0 ppm)
- 2 DC Branches, synchronize temperature change (2)
 - COOL density (g/cc): 0.8 0.6
 - COOL temp (K): 560 620
- AIC branch
- B4C branch
- AIC branch + PC branches (2)
- B4C branch + PC branches (2)
- Deplete 40 W/g with 0, 0.1, 1, 5 GWD/MTU

National Laboratory

- copy w17x17_branch.inp to w17x17_branch_1200K.inp
- 1200 K history calculation
- change nominal fuel temperature to 1200 K on state card
- For GenPMAXS, this is the only change to the input file, three keys:
 - 1. Use consistent branch block
 - 2. Just change the nominal state condition
 - 3. Will later instruct GenPMAXS how to order the two t16 files correctly


```
1=polaris_6.3
   general options
     5 title "W17x17 REFL" "Polaris training"
 6 lib "broad n"
 7 🖇
 8 % geometry
     10 geom W17 : ASSM 17 1.26
11 hgap 0.04
12 geom radref : REFL 21.5
13
14
    %equivalent to
15
16 geom radref : REFL thick=21.5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
```

reflector

geom card for reflector

geom GNAME : REFL thick=REAL

- GNAME reflector name
- REFL indicates reflector geometry
- thick total reflector thickness (cm)
- geom ASSM card must have sym=FULL


```
1=polaris 6.3
 2 %
    general options
 5 title "W17x17 REFL"
                            "Polaris training"
 6 lib "broad n"
 7 system PWR
 8 %
 9 % geometry
11 geom W17 : ASSM 17 1.26
12 hgap 0.04
13 geom radref : REFL 21.5
14 \text{ slab} : 5
                       16.5
15
         : TUBE
                 MOD.1
                  15
16
        : 3
17
18
20
21
22
23
25
27
28
29
30
```

Slab

slab – defines a series of slabs for reflector

slab [SLABID]

- : t1 t2 ... ti ... tN : M1 M2 ... Mi ... MN [: nx1 nx2 ... nxi ... nxN] [: ny1 ny2 ... nyi ... nyN]
- SLABID slab identifier, default is REFL GNAME
- t_i slab thickness (cm)
- M_i slab material
- nx_i # of x-mesh
- ny_i # of y-mesh
- Polaris preserves the horizontal planar pin boundaries of the fuel assembly ... ny is not necessary

1	=polaris_6.3	%	Slal	b
3	<pre>% general options %</pre>	8	 slab – defines a series of slabs for reflector 	
5	title "W17x17 REFL" " lib "broad_n"	Polaris training"	slab [SLABID]	
8	system PWR 8		* : M1 M2 Mi MN	
9 1 0	<pre>% geometry %</pre>			
11	geom W17 : ASSM 17 1.20			
12 13	hgap 0.04 geom radref : REFL 21.			
14	slab: 5 16.5			
16	$\begin{array}{c} : \text{TOBE} & \text{MOD.1} \\ \vdots & 3 & 15 \end{array}$			
17				
19				
20 21				
22				
23 24				
25				
27				
28 29				
420			National Labora	atory

Reflector Modeling

- Core analysis generally requires top, bottom, radial reflector model
- No history or branches required
 - if any: coolant dens, temp, boron
- Requires knowledge of core structure geometry dimensions and material properties for core structure
 - baffle
 - rod end plugs
 - upper plenum region
 - end spacer grids
 - upper/lower core plate

- Typical radial reflector:
 - Fuel: low enriched fuel
 - Slab zones:
 - 1. small gap b/w fuel and baffle
 - 2. baffle
 - 3. coolant
 - Reflector width ~ lattice pitch

Reflector Modeling

- Typical bottom reflector:
 - Fuel: determine need for end spacer grid correction
 - Coolant: inlet conditions
 - Structures:
 - end plugs
 - spacer grids
 - nozzle
 - lower core plate

- Typical top reflector:
 - Fuel: determine need for end spacer grid correction
 - Coolant: outlet conditions
 - Structures:
 - end plugs
 - fuel rod upper plenum
 - spacer grid
 - nozzle
 - upper core plate

Exercises

- copy w17x17 rev3.inp to radref.inp
- remove SE symmetry
- reduce enrichment to 1.0%
- reduce COOL and MOD boron to 700 ppm
- slabs (21.5 cm total)
 - 0.19 cm gap b/w fuel and baffle (COOL.1)
 - 2.85 cm baffle SS304 (TUBE)
 - remainder MOD.1
 - # of x-mesh: ceiling(thick/ppitch)= (1,3,15)

- copy w17x17 rev3.inp to botref.inp
- remove SE symmetry
- reduce COOL and MOD boron
 reduce COOL and MOD boron to 700 ppm
- slabs (21.5 cm total)
 - 10.75 cm slab 50% wt zirc4 and 50% wt 700 ppm WATER, 1.2 g/cc
 - 10.75 cm slab 80% wt ss304, 20% wt 700 ppm WATER, 2.1 g/cc
 - # of x-mesh: ceil(t/pin pitch)

- copy w17x17 rev3.inp to topref.inp
- remove SE symmetry
- to 700 ppm
- slabs (21.5 cm total)
 - 10.75 cm slab 65% wt zirc4 and 35% wt 700 ppm WATER, 1.0 q/cc
 - 10.75 cm slab 80% wt ss304, 20% wt 700 ppm WATER, 2.3 g/cc
 - # of x-mesh: ceil(t/pin pitch)

	1	*JOB TIT								
\bigotimes	2	'w17x17.	PMAX '	т З.(0 'POI	LARIS-F	' XAM			
\bigotimes	3	<i>*JOB OPT</i>								
X	4	TTE	F T	Г Г	T F	T F	F	т т	F O	
Ħ	5	!ad,xe,de	a,j1,cl	h,Xd,:	iv,dt,	,yl,cd,	gf,b	e,lb,	dc,ups	5
	6	*DAT_SRC								
K	7	8211.	0							
	8	*STA_VAR								
	9	4								
	10	CR DC PC	C TF							
	11	%HISTORY								
	12	21								
	13	'NOM' C	.680	700	900					
	14	'HTF' C	.680	700	1200					
	15	%BRANCH								
	16	13 1								
	17	'NOM' C	.680	700	900					
	18	'ТҒН' С	.680	700	1200					
	19	'TFL' C	.680	700	600					
	20	'PCH' C	.680	1200	900					
	21	'PCL' C	.680	0	900					
	22	'DCH' C	.800	700	900					
	23	'DCL' C	.600	700	900					
	24	'CR1' 1	680	700	900					
	25	'CR2' 2	. 680	700	900					
	26	'1PH' 1	680	1200	900					
	27	'1PL' 1	680	0	900					
	28	'2PH' 2	2.680	1200	900					
	29	'2PL' 2	. 680	0	900					
	30									

- GENPMAXS converter code for coupling lattice physics codes to PARCS
- Line 2:

- w17x17.PMAX the name of the generated PMAX file
- Line 7:
 - 8: indicates processing Polaris XS file
 - 2: number of Polaris XS files
 - -1: 1 for fuel, 0 for reflector
 - 1.0: always 1.0

	1	*JOB TIT								
\bigotimes	2	'w17x17.E	MAX '	т З.() 'POI	ARIS-P	' XAM			
\otimes	3	₿ <i>\$JOB OPT</i>								
X	4	TTF	F 7	C F	T F	T F	F	т т	F	0
Ħ	5	!ad,xe,de,	j1,cł	n,Xd,	iv,dt,	yl,cd,	gf,b	e,lb,	dc,u	ps
	6	second SRC								
X	7	8211.0)							
	8	³ %STA_VAR								
	9	4								
	10	CR DC PC	TF							
	11	%HISTORY								
	12	21								
	13	'NOM' 0	. 680	700	900					
	14	'HTF' O	. 680	700	1200					
	15	*BRANCH								
	16	13 1								
	17	'NOM' 0	. 680	700	900					
	18	'TFH' O	. 680	700	1200					
	19	'TFL' O	. 680	700	600					
	20	'PCH' 0	. 680	1200	900					
	21	'PCL' 0	. 680	0	900					
	22	'DCH' 0	.800	700	900					
	23	'DCL' 0	. 600	700	900					
	24	'CR1' 1	. 680	700	900					
	25	'CR2' 2	. 680	700	900					
	26	'1PH' 1	. 680	1200	900					
	27	'1PL' 1	. 680	0	900					
	28	'2PH' 2	. 680	1200	900					
	29	'2PL' 2	. 680	0	900					
	30)								

- HISTORY card
- Line 12:

- -2: # of histories
- 1: first history is the reference history
- Line 13:
 - 'NOM' just a label, not used by code
 - CR DC PC TF values
- Line 14:
 - 'HTF' just a label, not used by code
 - CR DC PC TF values

	1	<i>SJOB TIT</i>								
\bigotimes	2	'w17x17.E	YXAM	т З.() 'POI	LARIS-P	' XAM			
\bigotimes	3	³ %JOB_OPT								
X	4	TTF	F 1	г ғ	T F	ΤF	F :	ГТ	F O	
Ħ	5	!ad,xe,de,	j1,cł	h,Xd,	iv,dt,	,yl,cd,	gf,be	≥,1b,	dc,ups	5
	6	⁵ ∦DAT_SRC								
X	7	8211.0)							
	8	3 %STA_VAR								
\square	9	4								
	10	CR DC PC	TF							
	11	&HISTORY								
	12	21								
	13	³ 'NOM' 0	. 680	700	900					
	14	'HTF' O	. 680	700	1200					
	15	8BRANCH								
	16	13 1								
	17	' 'NOM' 0	. 680	700	900					
	18	³ 'TFH' 0	. 680	700	1200					
	19	'TFL' O	. 680	700	600					
	20	PCH' 0	. 680	1200	900					
	21	'PCL' 0	. 680	0	900					
	22	'DCH' 0	.800	700	900					
	23	'DCL' 0	. 600	700	900					
	24	'CR1' 1	. 680	700	900					
	25	'CR2' 2	. 680	700	900					
	26	'1PH' 1	. 680	1200	900					
	27	'1PL' 1	. 680	0	900					
	28	³ '2PH' 2	. 680	1200	900					
	29	'2PL' 2	. 680	0	900					
	30)								

- BRANCH card
- Line 16:

- 13: # of branches
- -1: first branch is the reference branch
- Line 17-29:
 - label, not used by code
 - CR DC PC TF values

- BURNUP card
- Line 32: 1 only one burnup list
- Line 33:
 - 'NOM_Burn' : label, not used by code
 - 4: number of burnup steps
- Line 34: the four burnup steps
- Line 35 (first history):
 - 'NOM': just a label to help input setup
 - 13*1: all 13 branches of history 1 use the first burnup list
- Line 36 (second history):
 - 'HTF': just a label to help input setup
 - 13*1: all 13 branches of history 2 use the first burnup list

-264									
61	8 FI	L CI	VT						
62	1	'w17	/x17	7_br	anc	h.t	16' 13 0		
63		1	1	1	1	4	! NOM		
64		2	1	2	1	4	! TFH		
65		3	1	3	1	4	! TFL		
66		4	1	4	1	4	! PCH		
67		5	1	5	1	4	! PCL		
68		6	1	6	1	4	! DCH		
69		7	1	7	1	4	!DCL		
70		8	1	8	1	4	!CR1		
71		9	1	9	1	4	! CR2		
72		10	1	10	1	4	!1 PH		
73		11	1	11	1	4	!1PL		
74		12	1	12	1	4	!2PH		
75		13	1	13	1	4	!2PL		
76	2	'w17	/x17	7_br	canc	h_1	200K.t16'	13	0
77		1	2	2	1	4	! TFH		
78		2	2	1	1	4	! NOM		
79		3	2	3	1	4	! TFL		
80		4	2	4	1	4	! PCH		
81		5	2	5	1	4	! PCL		
82		6	2	6	1	4	! DCH		
83		7	2	7	1	4	!DCL		
84		8	2	8	1	4	!CR1		
85		9	2	9	1	4	! CR2		
86		10	2	10	1	4	!1PH		
87		11	2	11	1	4	!1PL		
88		12	2	12	1	4	!2PH		
89		13	2	13	1	4	!2PL		
90	8 JO I	B_ <i>El</i>	VD						

- FIL_CNT card
- Line 62:
 - 1: 1st file
 - w17x17_branch.t16: name of 1st file
 - 13: 13 branches on 1st file
 - 0: always 0
- Line 63-75:
 - first number is ignored, just use the index of the branch:
 - second number: history index
 - third number: branch index
 - fourth number: always 1
 - fifth number: always number of burnup steps
 - !XXX ignored by the code, ! denotes a comment
- Line 76:
 - 2: 2nd file
 - $w17x17_branch_1200K.t16: name of 2^{nd} file$
 - 13: 13 branches on 2nd file
 - 0: always 0
- Line 77-89: see above
- Line 90: %JOB_END

-244										
61	%FIL	Cl	VT							
62	1 '1	w17	x1 7	7_bi	ranc	h.t	1 <mark>6' 1</mark> 3	0		
63		1	1	- 1	1	4	! NOM			
64		2	1	2	1	4	! TFH			
65		3	1	3	1	4	! TFL			
66		4	1	4	1	4	! PCH			
67		5	1	5	1	4	! PCL			
68		6	1	6	1	4	! DCH			
69		7	1	7	1	4	!DCL			
70		8	1	8	1	4	!CR1			
71		9	1	9	1	4	!CR2			
72	:	10	1	10	1	4	!1PH			
73	:	11	1	11	1	4	!1PL			
74	:	12	1	12	1	4	!2PH			
75		13	1	13	1	4	!2PL			
76	2 '1	w17	/x17	7_bı	canc	h_1:	200K.t	16'	13	0
77		1	2	2	1	4	! TFH			
78		2	2	1	1	4	! NOM			
79		3	2	3	1	4	! TFL			
80		4	2	4	1	4	! PCH			
81		5	2	5	1	4	! PCL			
82		6	2	6	1	4	! DCH			
83		7	2	7	1	4	!DCL			
84		8	2	8	1	4	!CR1			
85		9	2	9	1	4	!CR2			
86		10	2	10	1	4	!1PH			
87	:	11	2	11	1	4	!1PL			
88	:	12	2	12	1	4	!2PH			
89	:	13	2	13	1	4	!2PL			
90	\$JOB	_El	ID							

Genl	PMAXS
 FIL_CNT card Line 62: 1: 1st file 9 of 1st file 9 of 1st file I use a comment to identify the order of the branches in the Polaris calculation. 	
 first number is ignored, just use the index of the b second number: history index third number: branch index fourth number: always 1 fifth number: always number of burnup steps !XXX – ignored by the code, ! denotes a comment 	ranch:
 Line 76: 2: 2nd file w17x17_branch_1200K.t16: name of 2nd file 13: 13 branches on 2nd file 0: always 0 	
Line 77-89: see aboveLine 90: %JOB_END	CAK RIDGE

61 ફ	FIL_CN	T							
62	1 'w17	x1 7	br	anc	h.t	16' 13	0	GenP	MAXS
63	1	1	1	1	4	! NOM			
64	2	1	2	1	4	! TFH			
65	3	1	3	1	4	!TFL		 FIL_CNT card 	
66	4	1	4	1	4	! PCH		a Line 62:	
67	5	1	5	1	4	! PCL		• Liffe 62.	
68	6	1	6	1	4	! DCH		- 1: 1 st file	
69	7	1	7	1	4	!DCL		Luce a comment to identify the	
70	8	1	8	1	4	!CR1			
71	9	1	9	1	4	!CR2		order of the branches in the	
72	10	1	10		4	! 1 PH		Polaris calculation. I use the same	
73	11				4	10DH		labels in %BRANCH	
75	12	1	12		4	! 2PH		st use the index of the bran	ch:
76	$\frac{13}{2}$	⊥ ⊽15	12	L L	-1 1-1	200K +	16' 13 0	 second number: history index 	
77	2 w1/ 1	2		1	<u></u> _	ITEH	.10 13 0	 third number: branch index 	
78	2	2	1	1	4	INOM		 fourth number: always 1 	
79	3	2	3	1	4	UTFT.		The branch index should match	
80	4	2	4	ī	4	PCH		the order in %BRANCH	
81	5	2	5	1	4	! PCL		a Lino 76:	
82	6	2	6	1	4	! DCH			
83	7	2	7	1	4	!DCL		– 2: 2 ^{nu} file	
84	8	2	8	1	4	!CR1		 w17x17_branch_1200K.t16: name of 2nd file 	
85	9	2	9	1	4	!CR2		 – 13: 13 branches on 2nd file 	
86	10	2	10	1	4	!1PH		– 0: always 0	
87	11	2	11	1	4	!1PL		 Line 77-89: see above 	
88	12	2	12	1	4	!2PH			
89	13	2	13] 1	4	!2PL		Line 90: %JOB_END	
90 8	JOB_EN	D							National Laboratory

time-dependent operational changes

multiple histories in the same input file

<pre>1 =polaris_6.3 2 lib "broad_n" 3 sys PWR 4 geom taka : ASSM 1 1.26 5 comp u411 : UOX 4.11 6 mat FUEL.1 : u411 10.412 7 pin 1 : .4025 .475 : FUEL.1 CLAD 8 state ALL : temp=600 9 COOL : dens=0 6 boron=1100</pre>
10 FUEL : temp= 900
11 read history
12 *
13 % cvcle 1
14 8
15 pow 39
16 state COOL : boron=900 850 700 600 400
17 FUEL : temp=900 910 920 890 880
18 dt 50 50 100 100 200
19 pow 0
20 ti 70
21 8
22 % cycle 2
23 8
24 pow 42 41 38 39 37
25 state COOL : boron=900 850 700 600 300
26 dt 50 50 100 250
20 ti ov
30 end

history example

- history block allows for time-dependent operational changes
- similar to TIMETABLE block in TRITON

history example

- history block allows for time-dependent operational changes
- similar to TIMETABLE block in TRITON
- outside of history block
 - one state card to initialize state variables
- inside history block
 - power, state, and burnup/time cards are entered together
 - power single value or array
 - state array
 - burnup/time array
 - all arrays must be same size
 - state must precede burnup/time
 - multiple power/state/time cards may be stacked together
- convenient for RCA benchmarks

- copy w17x17_rev3.inp to history.inp
- reduce 17x17 to 3x3 with GT in the middle
- history 1 (avg.):
 - Pow 40
 - Bu 1 5 10 20
 - COOL and MOD boron 700 ppm
- history 2 (letdown):
 - Pow 40
 - Bu 1 5 10 20
 - COOL and MOD boron 1000 800 800 500
- compare history_avg.f71, history_letdown.f71

shield card opt DEPL card

Options

- option cards
 - KEFF
 - ESSM
 - BOND
 - DEPL
 - CRITSPEC
 - PRINT
 - FG

- option ESSM, BOND, DEPL
 - Use default values
 - See manual for details
- shield: controls set of material regions with independently selfshielded cross-sections

opt DEPL

opt DEPL [key₁=val₁ key₂=val₂ ... key_i=val_i ... key_N=val_N]

key	value type	details	default
TrackingSet	String	set of nuclides tracked in depletion calculations	"Complete"
		"None": set of nuclides present in user	
		input	
		"Complete": complete set of all nuclides	
Solver	String	"MATREY": legacy ORIGEN solution	"MATDEY"
301461	String	method	MAINEX
		"CRAM": Chebyshev Rational	
		Approximation Method	
Method	String	"PREDICTOR"	"PREDICTOR_CORRECTOR"
		"PREDICTOR_CORRECTOR"	
StepRefinement	Int	divide the user input steps by this	1
		factor>0, i.e., refinement of 2 divides all	
		steps by 2 (NOT ENABLED)	
NumSubsteps	Int	Number of internal substeps for	4
		depletion calculations	
DepleteMode	String	"BOSS" or "MOSS." The depletion power	"BOSS"
		renormalization is done at the beginning	
		of each substep (BOSS) or the middle of	
		each substep (MOSS)	

Shield card

- shield: controls set of material regions with independently self-shielded crosssections
- shield $M_1 = XTYPE M_2 = XTYPE \dots M_i = XTYPE \dots M_N = XTYPE$
- M_i Material name (FUEL.1) or Material class (FUEL) or ALL for all materials
- XTYPE
 - N for no expansion of input materials for shielding (each input material has a single cross section set and is depleted with independent isotopics)
 - P for pin expansion (each input material in each pin has a single cross section set and is depleted with independent isotopics)
 - R for ring expansion (each input material in each pin/ring has a single cross section set and is depleted with independent isotopics)
- Default: shield ALL=N FUEL=R CNTL=R BP=R

https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-1.pdf additional data at: http://info.ornl.gov/sites/publications/files/Pub23359.pdf

Exercise 1 of 3

- Takahama assembly depletion benchmark
 - copy taka_depl_rev0.inp as taka_depl_rev1.inp
 - change radial mesh for FUEL.1 and FUEL.3 to nr=3
 - add

Guide

tube Fuel

rod Measured

rod Gd₂O₃

rod

- shield ALL=N FUEL.1=P FUEL.2=R FUEL.3=P
- note FUEL.2 is a Gd-bearing rod so "R" should be used
- compare discharge isotopics and keff vs burnup with taka_depl_rev0 output

Exercise 2 of 3

- Takahama assembly depletion benchmark
 - copy taka_depl_rev1.inp as taka_depl_rev2.inp
 - add

Guide

tube Fuel

rod Measured

rod Gd₂O₃

rod

- shield ALL=N FUEL.2=R
- note FUEL.2 is a Gd-bearing rod so "R" should be used
- compare discharge isotopics and keff vs burnup with taka_depl_rev1 and taka_depl_rev0 output (note f71 position record has changed)
- compare run-time

Exercise 3 of 3

- Takahama assembly depletion benchmark
- copy taka_depl_rev2.inp as taka_depl_rev3.inp

add

Guide

tube Fuel

rod Measured

rod Gd₂O₃

rod

- opt DEPL Method='PREDICTOR'
- compare discharge isotopics and keff vs burnup with previous cases
- compare run-time

opt FG opt CRITSPEC opt PRINT

option CRITSPEC

3.2.6.5 option<CRITSPEC> – critical spectrum

opt CRITSPEC [key₁=val₁ key₂=val₂ ... key_i=val_i ... key_N=val_N]

key	value type	details	default		
Mode	String	critical spectrum mode	"SEARCH"		
		"SEARCH": search for critical mode (k-eff=1)			
		"SPECIFIED": provide B2 below			
		"NONE": do not use critical spectrum			
B2	Real	<i>Real</i> value of critical buckling if Mode="SPECIFIED"			
		units: cm ⁻²			
Method	String	critical spectrum system	"P1"		
		"B1": solve the B_1 equations			
		"P1": solve the P ₁ equations			

Examples

% enable critical buckling search using B1 equations for a buckling of 1e-3 opt CRITSPEC Mode="SPECIFIED"

B2=1e-3

Method="B1"

- options to control the critical spectrum calculation
- by default, the critical spectrum search is enabled
- to disable

opt CRITSPEC Mode='none'

to specify a buckling value

opt CRITSPEC B2=0.001 Mode='specified'

• P1 is default, to set to B1

opt CRITSPEC Method='B1'

option **PRINT**

option <print> –</print>	printing		
$INT [key_1 = val_1 key_2 key$	val ₂ key	$r_i = val_i \dots key_N = val_N$]	
key	value type	details	default
XSSummary	Bool	print a cross section summary in the output file	true
CritSpecSummary	String	print critical spectrum summary	"BUCKLING
		"NONE": no print out	
		"BUCKLING": limited buckling info	
		"SPECTRUM": full spectrum	
XFile16	Bool	output a TRITON xfile016 nodal data library	false
InputDataContainer	Bool	print out the input data container	true

- printing options
- to print the txtfile16

opt PRINT XFile16=yes

• to print the critical spectrum

opt PRINT CritSpecSummary='spectrum'

option FG

3.2.6.7 option <fg> – few-group cross-section generation</fg>								
opt FG	ł							
[AdjointMode=String InvVelMode=String]								
[: b ₁		\mathbf{b}_2		\mathbf{b}_{i}		$\mathbf{b}_{\mathbf{N}}$]
[$: E_1 E_2 \ldots E_i \ldots$	E _{N-1}]						
	param	type	details				default	
	AdjointMode	String	type of ac data gene "INFMEE "CRITICA "UNIFOR	djoint calcula ration D": infinite m NL": critical sp RM": uniform	ation to use ir edium adjoint ectrum adjoin adjoint	n few-group t	"INFMED"	
	InvVelMode	String	weighting option for few-group inverse velocities "FORWARD": forward flux weighting "ADJOINT": adjoint flux weighting			"FORWARD"		
	bi	Real	list of bur cross secti units: GW	rnups to incl ion database, d/MTHM	lude in output , e.g. XFile16 o	t few-group utput	all burnups a	vailable
	Ei	Real	note desce needed fo E₀ is maxir E _N is minin units: eV	ending order r an N group num energy num (typicall	and only N-1 o structure (typically 2e7 e y 1e-5 eV)	divisions are	0.625 eV (two groups)	division

- Few-group XS options
- Defaults are fine
- Example:
- opt FG:015:10001
- "0 1 5" implies branch calculations are only performed at these burnups
- These must be a subset of the depletion burnups
- The txtfile16 will only have FG XS at "0 1 5" GWD/MTHM
- "1000 1" implies a 3 group XS structure
 - 1. 2e7 eV to 1000 eV
 - 2. 1000 eV to 1 eV
 - 3. 1 eV to 1e-5 eV

Critical Spectrum Calculation Edit	
User-defined buckling, B2 = 2.590E-02 B1/P1 approximation: B1 P1 scattering matrix treatment (full matrix ransport cross s Critical spectrum k-eff = 0.37709	Exercises
Group Upper System Inf.Med. Critical Diffusion # Energy(eV) Flux Flux Flux Coef (cm) 1 2.000E+07 1.902E-03 1.902E-03 2.218E-03 2.416E+00 2 6.434E+06 1.915E-02 1.915E-02 2.296E-02 2.278E+00 3 4.304E+06 3.426E-02 3.426E-02 4.541E-02 1.975E+00 4 3.000E+06 5.533E-02 5.533E-02 6.786E-02 2.109E+00 5 1.850E+06 5.088E-02 5.088E-02 6.623E-02 1.818E+00 6 1.500E+06 5.289E-02 5.289E-02 6.800E-02 1.698E+00 7 1.200E+06 4.732E-02 4.732E-02 6.199E-02 1.409E+00 8 8.611E+05 6.079E-02 6.079E-02 7.312E-02 1.608E+00 9 7.500E+05 5.445E-02 5.445E-02 5.425E-02 1.530E+00 10 6.000E+05 4.801E-02 4.801E-02 3.766E-02 1.080E+00 11 4.700E+05 3.169E-02 3.169E-02 3.766E-02 1.214E+00 12 3.300E+05 3.914E-02 3.914E-02 4.427E-02 1.214E+00 13 2.700E+05 3.215E-02 3.215E-02 3.543E-02 1.091E+00 14 2.000E+05 2.344E-02 2.344E-02 2.4427E-02 1.196E+00 14 2.000E+05 2.344E-02 2.344E-02 3.543E-02 1.091E+00	 copy w17x17_rev3.inp to w17x17_4G.inp enable critical spectrum print use B1 critical spectrum with buckling equal to 0.0259 edit 4G cross sections with 50 keV, 116 eV, 0.625 eV boundaries opt FG :: 50000.0 116.0 0.625
17 Broad Upper Lower # of Fine Group Energy(eV) Energy(eV) Groups Group Kappa- # Fis. 1 2.000E+07 5.000E+04 14 1 2 5.000E+04 1.160E+02 8 1 3 1.160E+02 6.250E-01 18 2 4 6.250E-01 1.000E-05 16 4	Nu- Fission Fission Chi

opt KEFF IFBA Modeling

opt KEFF

	2		
key	value type	details	default
NumAzim	Int	number of azimuthal angles per octant	20
NumPolar	Int	number of polar angles per octant	3
PnOrder	Int	scattering order	2
RaySpacing	Real	spacing between MoC rays	0.04 cm
PolarScheme	String	polar quadrature	"TY"
	-	"TY": Tabuchi-Yamamoto quadrature	
		"DECART": DeCART quadrature	
		"LO": Leonard optimal quadrature	
		"CACTUS": Cactus quadrature	
EigSolver	String	eigenvalue solver type	
		"CMFD" (single-assembly default)	
		"POWER" (reflector default)	
UpscatterSolver	String	upscatter solver type	
		"GAUSS_SEIDEL", (default if EigSolver="CMFD")	
		"BICGSTAB" (default if EigSolver="POWER")	
		"GMRES"	
DownscatterSolver,	String	within-group solver type	
UpscatterInnerSolver		"SOURCE", (default if EigSolver="CMFD")	
		"BICGSTAB" (default if EigSolver="POWER")	

- options to control k-eff calculation
- MOC quadrature options:
 - NumPolar: 3
 - NumAzim: 20
 - RaySpacing: 0.04
- IFBA requires tighter rayspacing

IFBA

- Integral Fuel Burnable Absorber
- spray-on coating of ZrB₂ with enriched B-10
- ~10 microns thick
- copy w17x17 ifba rev0.inp from starters folder

Table 11: IFBA Fuel Rod Specification						
Input	Value					
Poison Material	ZrB_2					
Boron-10 Loading	2.355 mg/in					
Boron-10 Enrichment	50%					
Coating Thickness	10 µm					
Coating Density	3.85 g/cc					
Poison Height	304.8 cm					
Poison Location	Centered axially					

- The default ray spacing in Polaris is 0.04 cm (400 microns); this is too coarse for IFBA
- To refine the ray spacing use

opt KEFF RaySpacing=X

- copy w17x17_ifba_rev0.inp w17x17_ifba_rev1.inp through w17x17_ifba_rev3.inp
- rerun with ray-spacing of 0.01 cm, 0.003 cm, and 0.001 cm

IFBA

- 3x3 pin calc:
 - Internal assessments have found 0.003 cm (30 micron) ray-spacing is sufficient for 10 micron IFBA layers
- Lattice:
 - run-time vs. accuracy trade-off
 - smaller sensitivity to ray-spacing at lattice level
 - ORNL uses 0.01

spacing	0.001		0.003		0.01		0.04	
bu	k	dk (pcm)						
0	1.14048	0	1.14052	4	1.13972	-76	1.14151	103
0.1	1.10546	0	1.10550	4	1.10477	-69	1.10643	97
1	1.10247	0	1.10249	2	1.10203	-44	1.10327	80
2	1.10297	0	1.10298	1	1.10272	-25	1.10361	64
4	1.09582	0	1.09582	0	1.09580	-2	1.09623	41
6	1.08357	0	1.08356	-1	1.08364	7	1.08382	25
8	1.06946	0	1.06945	-1	1.06953	7	1.06962	16
10	1.05469	0	1.05468	-1	1.05475	6	1.05480	11

spacer grid modeling

Modeling Spacer Grids

- Spacer grids displace coolant and absorb neutrons
- Spacer grids must be taken into account in lattice physics calculations
- Common approach:
 - Define linear density of spacer grid (g/cm) on input
 - Grids are automatically homogenized with the coolant volume
- SCALE 6.2 Polaris: modify the clad radius and/or material composition

Reference: CASL Benchmark for WBN1

Table 3: Space	Grid Specificat	ion
	End Grids	Intermediate Grids
Number	2	6
Material	Inconel-718	Zircaloy-4
Mass (g)	1017	875
Height (cm)	3.866	3.810
Mixing Vanes?	No	Yes
Axial Locations (cm)	13.884	75.2
(center of inner strap relative to	388.2	127.4
top of lower core plate)		179.6
		231.8
		284.0
		336.2

Reference: CASL Benchmark for WBN1

- Axially-averaged linear density for intermediate grids
 - 6 grids * 875 g / 365.76 cm fuel stack height
 - 14.4 g/cm
 - per fuel pin: 14.4/264 = 0.05455 g/cm

- just consider intermediate grid effect
- copy w17x17_no_grid.inp from starters
- deplete
- copy w17x17_no_grid.inp to w17x17_grid_in_clad.inp
- adjust clad radius to account for 0.05455 g/cm grid density.
 - Note Zirc-4 is 6.56 g/cc:
 - 6.56/0.05455 = 0.00831 cm² spacer area per fuel pin
 - Clad area: pi*(.475²-.418²): 0.16
 - New clad area: 0.168831
 - Adjusted clad radius: ?
- deplete and compare k-eff curves

Spacer Grid Effect

bu	grid in clad	no grid	spacer grid effect
0	1.20794	1.20964	-170
0.1	1.16721	1.16887	-166
1	1.15280	1.15445	-165
2	1.14334	1.14502	-168
4	1.12144	1.12316	-172
6	1.09929	1.10100	-171
8	1.07863	1.08032	-169
10	1.05959	1.06123	-164
12	1.04202	1.04359	-157
14	1.02571	1.02721	-150
16	1.01045	1.01188	-143
18	0.99607	0.99741	-134
20	0.98245	0.98371	-126
25	0.95136	0.95238	-102
30	0.92345	0.92424	-79
35	0.89838	0.89893	-55
40	0.87593	0.87625	-32
45	0.85594	0.85604	-10
50	0.83829	0.83819	10
55	0.82276	0.82251	25
60	0.80920	0.80881	39

4

Polaris in SCALE 6.2

• SCALE 6.2 (April 2016)

- Initial release of Polaris
- PWR: Any NxN array of pins, size=2 guide tubes
- BWR: GE 7x7 and GE 10x10 designs
- Reflectors
- SCALE 6.2.1 (July 2016)
 - Minor updates
 - Better diffusion coefficient method
 - Improved accuracy (higher order scattering)
 - No geometry changes
- SCALE 6.2.2 (~January 2017)
 - New input cards to support BWRs
 - New input cards to support history calculations

- In addition to new input cards, several input cards were modified based on user feedback and internal design review
- To maximize backwards compatibility, new input cards and modified cards are activated using **=polaris_6.3**
- **=polaris** still supports original input cards in SCALE 6.2
- Both formats documented in manual

1 =polaris	
2 **	
3 % general options	
4 88	
5 title "BWR simple"	
6 lib "broad_n"	
7 system BWR	
8 88	
9 % geometry (lattice pitch=15.24)	
10 %%	
11 geom bwr7x7 : ASSM 7 1.88	
12 hgap 0.47498 0.9525 : MOD.1 MOD.2	
13 box 0.2032 0.0 0.12306	
14 8	
15 % fuel material (2) distance from pin array	
16 get to channel box	
17 comp c e293 : UOX 2.93	
18 mat FUEL 1 : C e293 10.32	
20 * ning	
21 8	
$22 \text{ pin} 1 \div 0.61 0.62 0.715$	
22 pin 1 . 0.01 0.02 0.713	
23 . FUEL.I GAP.I CLAD.I	
27 state ALL : temp=600	
28 state MOD : Vold=0	
one state card per defini	tion
30 end	

1=polaris_6.3
2 %
3 * general options
4 %%
5 title "BWR simple"
6 lib "broad_n"
7 system BWR
9 * geometry (lattice pitch=15.24)
$10 \ $
12 bgsp 0 47499 0 9525 \cdot MOD 1 MOD 2
12 mgap = 0.47498 = 0.9525 : MOD.1 MOD.2
14 8
15 * fuel material (2) 1/2 in-channel span
16 %*
17 comp c e293 : UOX 2.93
18 mat FUEL.1 : c e293 10.32
<u> </u>
20 % pins
21 %
22 pin 1 : 0.61 0.62 0.715
23 : FUEL.1 GAP.1 CLAD.1
24 88
25 * state single state card
26 **
27 state ALL : temp=600
28 MOD : void=0
29 COOL : void=40
30 end

	1	=po]	lar	rie	5			
Š	2	poi						
 k	3	8						%
Ż	4	8 p:	in	e	xamples			
Ś	5	8						8
Ì	6							
	7	pin	Α	:	0.4096	0.418	0.475	
	8			:	FUEL.1	GAP.1	CLAD.1	COOL.1
	9			:	1	1	1	1
	10			:	8	8	8	8
	11							
	12							
	13	pin	в	:	0.4096	0.418	0.475	
	14			:	FUEL.1	GAP.1	CLAD.1	COOL.1
	15			:	3	1	1	2
	16			:	1	1	1	4
	17							
	18							
	19	pin	С	:	0.4096	0.418	0.475	
	20			:	FUEL.1	GAP.1	CLAD.1	COOL.1
	21			:	3	1	1	0
	22			:	1	1	1	-4
	23							
	24		_		0 1000	0 410	0 475	
	25	pın	D	:	0.4096	0.418	0.4/5	COOT 1
	20			:	FORL.I	GAP.I		0001.1
	27			:	2	1	1	16
	20			:	-4	T	T	-10
	30							
1	50							

=polaris pin mesh definition

Contract Con

Density and Boron Property Update (SCALE Newsletter Volume 51)

 As shown in the following example, a Polaris input defines the coolant density (DC) as 0.6 and the coolant boron concentration (PC) as 1,000 ppm. The problems occur in SCALE version 6.2.2 if the input changes the coolant properties either through a state card or a branch card. The results shown in the table below are obtained with SCALE versions 6.2.1, 6.2.2, and 6.2.3

Casa	Initi	al	Final		SCALE version		
Case		al	Filla	6.2.1	6.2.2	6.2.3	
DC only	boron = 1000	dens = 0.6	boron = 1000	dens = 0.7	OK	OK	OK
PC only	boron = 1000	dens = 0.6	boron = 100	dens = 0.6	OK	OK	OK
PC+DC	boron = 1000	dens = 0.6	boron = 100	dens = 0.7	OK	Wrong	OK
DC+PC	boron = 1000	dens = 0.6	boron = 100	dens = 0.7	Wrong	Wrong	OK

Density and Boron Property Update (SCALE Newsletter Volume 51)

- Polaris applies a DC change to coolant concentrations using a fractional multiplier: new_conc = old_conc* (new_dc/old_dc). The Polaris bug results in the internal coolant density variable not being updated to the new density value. For a follow-on change to PC, Polaris will compute the fractional multiplier for H, O, and B isotopes using the old coolant density value instead of the updated density.
- The coolant property update works in SCALE 6.2.1 because the state variables are updated in alphabetical order, so the PC update comes before the DC update ("boron" before "dens"). In the DC+PC case, the PC update comes after the DC update, which leads to a bad result.
- In SCALE 6.2.2, ORNL staff added the history card option, which required an overhaul to the manner in which state changes are stored internally. In version 6.2.2, temperatures and densities were updated before boron properties; therefore, the code bug always led to bad results using SCALE 6.2.2. This issue has been fixed in version 6.2.3.

quick calculation options

Running fast calculations

 Detailed lattice calculations with branches and/or operating history can take 3 days to 2 weeks to complete

- In early stages of model development, you want to run a calculation that simulates each statetpoint, even if the calculation is wrong, in order to verify the structure of the .f71 or .t16 files
- Scenario 1: t16 file structure important, f71 file structure not important
- Scenario 2: final f71 file structure is important

1=polaris 6.3
2 88
3 % fast options
4 88
5 lib "broad n"
6 opt ESSM NumPolar=1 NumAzim=1 RaySpacing=0.08
7 opt KEFF NumPolar=1 NumAzim=1 RaySpacing=0.08
8 PnOrder=0 TransportCorrection=no
9 EigSolver='power'
10 EigMaxIterations=1
11 DownScatterSolver='source'
12 DownScatterMaxIterations=1
13 UpscatterSolver='gauss_seidel'
14 UpscatterMaxIterations=1
15 UpscatterInnerSolver='source'
16 UpscatterInnerMaxIterations=1
17 opt DEPL TrackingSet='none'
18 Method='predictor'
19 NumSubSteps=1
20 opt CRITSPEC Mode='none'
21 shield ALL=N
22 opt GEOM MeshNumRings=1
23 MeshNumSectors=1
24 MeshNumX=1
25 MeshNumY=1
26 %optional - comment out mesh cards

Scenario 1

- T16 file structure important
- F71 file structure not important
- see starters/fast_options_t16.txt

1	=po]	laris	6.3
2	8		
3	8 f a	ast og	ptions
4	웅		
5	lib	"broa	ad_n"
6	opt	ESSM	NumPolar=1 NumAzim=1 RaySpacing=0.08
7	opt	KEFF	NumPolar=1 NumAzim=1 RaySpacing=0.08
8			PnOrder=0 TransportCorrection=no
9			EigSolver='power'
10			EigMaxIterations=1
11			DownScatterSolver='source'
12			DownScatterMaxIterations=1
13			UpscatterSolver='gauss_seidel'
14			UpscatterMaxIterations=1
15			UpscatterInnerSolver='source'
16			UpscatterInnerMaxIterations=1
17	opt	DEPL	NumSubSteps=1
18	opt	CRIT	SPEC Mode='none'
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

Scenario 2

- f71 file structure important
- see starters/fast_options_f71.txt
- same as scenario 1, except shield and mesh are not modified

Exericse

- taka_depl_rev1.inp should be the slowest running depletion calculation
- copy to taka_depl_fast.inp
- copy/paste starters/fast_options.txt into input file, remove duplicate cards
- run and compare run-times

