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Who uses the ORIGEN API?

• CASL VERA-CS core simulator 

• ADVANTG with activation mode

• IN-DEPTH

• SCALE TRITON/Polaris

• ORIGEN sequence itself

• CYBORG (Cyclus fuel cycle simulator with ORIGEN)

• ORION fuel cycle simulator
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Dependencies

• SCALE 6.2
– LAPACK
– TRILINOS
– QT

• SCALE 6.3
– LAPACK
– TRILINOS
– QT
– HDF5
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Capabilities

• Anything that ORIGEN can do in SCALE!
– Decay/irradiation/activation
– Unit conversions
– Emission calculations
– Binary ORIGEN concentration file (F71) manipulation
– Etc.
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Layout

• Some knowledge of CMake/TriBITs configuration system is 
helpful

• Main package: $SCALE/packages/Origen

• Supackages:
– Core (lowest)
– Solver (depends on Core)
– Manager (depends on Solver)
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Layout (cont.)

• Supackages:
– Core (lowest)

• dc - data containers
• io - input/output routines
• re - data resources
• ts - transition system
• fn - function library
• ut - utility executables
• xf - interfaces

– Solver (depends on Core)
– Manager (depends on Solver)
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ORIGEN API story

• Evolved from need to modernize/modularize and 
simultaneously integrate with other codes
– Lots of existing capability which slowly morphed
– Multiple authors
– Started in Fortran, ended in C++ (C++ with auto bindings moving 

forward)
– Is messy! More than one way to do something (old way and new way 

with new way not 100% adopted)

• Want to do both
– Maximize code reuse within SCALE
– Limit dependencies on other packages in SCALE
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ORIGEN API story (cont.)

• Some bad design
– Class packages/Origen/Core/dc/TransitionMatrixP tries to do some 

things it cannot reliably and has horrible naming, get/set paradigm 
with no consistency checking

– Class packages/Origen/Core/dc/Material has too many accessors 

• Some good design
– Class packages/Origen/Core/ts/* is a cohesive set of classes for 

storing/updating/accessing transition properties
– Interface packages/Origen/Core/xf/Solver is a light solver interface 

(unifies old "MATREX" solver and "CRAM" solver)
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ORIGEN API story (cont.)

• Priorities for sponsors
– Fast, accurate, repeatable, …
– Allowed us to neglect documentation of API 

• Best documentation is the usage of the code in unit tests and throughout code 
base--need source license for that

• A github site hosts documentation https://wawiesel.github.io/OrigenAPI-
Demo/dd/d60/tst_material_8cpp-example.html

• As we gain confidence with C++ best practices and figure out 
the right classes, we will crystallize API
– Minimal set of C++ classes with Python, Fortran bindings through SWIG
– Gradual deprecation of "extra" classes

https://wawiesel.github.io/OrigenAPI-Demo/dd/d60/tst_material_8cpp-example.html
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Link your "app" to ORIGEN
Method Pros Cons

1. Link "app" 
against standard 
SCALE install from 
RSICC

• Do not have to build SCALE 
• Works with executable-only 

version
• Do not have to install third-party 

libraries (TPLs)

• Only works with C++ API
• Must use compatible compiler (see 

SCALE README)
• Need to develop linking commands 

(dependent libraries)

2. Link "app" 
against your build
of SCALE

• Compiler compatibility
• Can use Fortran API

• Must install TPLs
• Takes time to build SCALE (but one time 

cost)
• Need to develop linking commands 

(dependent libraries)

3. Build "app" with 
SCALE

• Compiler compatibility
• Can use Fortran API
• Least likely to break with SCALE 

changes

• Must install TPLs
• Takes time to build SCALE
• Need  to learn a little CMake/TriBITS
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Goals

• Use the C++ API from a standard RSICC Linux install

• Create a library and link an executable

• Get comfortable searching ORIGEN 
– source tree
– docs online (https://wawiesel.github.io/OrigenAPI-Demo/)

• Learn where ORIGEN tests are
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Exercises
1. Load an ORIGEN reaction resource and output 

some details (rr_output.cpp)
– Core/re/ReactionResource.h

– Core/io/ReactionResourceIO.h

– Core/io/tstReactionResourceIO.cpp

2. Create an ORIGEN concentration file and view in 
Fulcrum (myf71.cpp)

– Core/dc/StateSet.h

– Core/dc/Concentrations.h

3. Solve a decay problem using the Material API 
(decaythis.cpp)

– Core/dc/Material.h

– Solver/SolverSelector.h
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Exercises (cont.)
• We have created a simple CMake project for each exercise 

to execute method #1: Link "app" against standard SCALE 
install from RSICC.

• Each project should link and compile.
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Summary

• We hope you got a "feel" for the API today
– Hardest part is linking
– Next hardest part is knowing which part of the API to use

• Our plan
– Origen::Material will become the main entry point with dependency on 

a few other interfaces (Solver, Library, TransitionMatrix)
– Continue to extend Resources to have more input/output file formats
– Origen::Concentrations is the main storehouse for isotopic results
– Emission calcs and unit conversions are actions on Concentrations
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