
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Linking External Software
to the ORIGEN API
2018 SCALE Users' Group Tutorial

W. Wieselquist
S. Hart
K. Dugan

22 2018 SCALE Users' Group Tutorial

Who uses the ORIGEN API?

• CASL VERA-CS core simulator

• ADVANTG with activation mode

• IN-DEPTH

• SCALE TRITON/Polaris

• ORIGEN sequence itself

• CYBORG (Cyclus fuel cycle simulator with ORIGEN)

• ORION fuel cycle simulator

33 2018 SCALE Users' Group Tutorial

Dependencies

• SCALE 6.2
– LAPACK
– TRILINOS
– QT

• SCALE 6.3
– LAPACK
– TRILINOS
– QT
– HDF5

44 2018 SCALE Users' Group Tutorial

Capabilities

• Anything that ORIGEN can do in SCALE!
– Decay/irradiation/activation
– Unit conversions
– Emission calculations
– Binary ORIGEN concentration file (F71) manipulation
– Etc.

55 2018 SCALE Users' Group Tutorial

Layout

• Some knowledge of CMake/TriBITs configuration system is
helpful

• Main package: $SCALE/packages/Origen

• Supackages:
– Core (lowest)
– Solver (depends on Core)
– Manager (depends on Solver)

66 2018 SCALE Users' Group Tutorial

Layout (cont.)

• Supackages:
– Core (lowest)

• dc - data containers
• io - input/output routines
• re - data resources
• ts - transition system
• fn - function library
• ut - utility executables
• xf - interfaces

– Solver (depends on Core)
– Manager (depends on Solver)

77 2018 SCALE Users' Group Tutorial

ORIGEN API story

• Evolved from need to modernize/modularize and
simultaneously integrate with other codes
– Lots of existing capability which slowly morphed
– Multiple authors
– Started in Fortran, ended in C++ (C++ with auto bindings moving

forward)
– Is messy! More than one way to do something (old way and new way

with new way not 100% adopted)

• Want to do both
– Maximize code reuse within SCALE
– Limit dependencies on other packages in SCALE

88 2018 SCALE Users' Group Tutorial

ORIGEN API story (cont.)

• Some bad design
– Class packages/Origen/Core/dc/TransitionMatrixP tries to do some

things it cannot reliably and has horrible naming, get/set paradigm
with no consistency checking

– Class packages/Origen/Core/dc/Material has too many accessors

• Some good design
– Class packages/Origen/Core/ts/* is a cohesive set of classes for

storing/updating/accessing transition properties
– Interface packages/Origen/Core/xf/Solver is a light solver interface

(unifies old "MATREX" solver and "CRAM" solver)

99 2018 SCALE Users' Group Tutorial

ORIGEN API story (cont.)

• Priorities for sponsors
– Fast, accurate, repeatable, …
– Allowed us to neglect documentation of API 

• Best documentation is the usage of the code in unit tests and throughout code
base--need source license for that

• A github site hosts documentation https://wawiesel.github.io/OrigenAPI-
Demo/dd/d60/tst_material_8cpp-example.html

• As we gain confidence with C++ best practices and figure out
the right classes, we will crystallize API
– Minimal set of C++ classes with Python, Fortran bindings through SWIG
– Gradual deprecation of "extra" classes

https://wawiesel.github.io/OrigenAPI-Demo/dd/d60/tst_material_8cpp-example.html

1010 2018 SCALE Users' Group Tutorial

Link your "app" to ORIGEN
Method Pros Cons

1. Link "app"
against standard
SCALE install from
RSICC

• Do not have to build SCALE
• Works with executable-only

version
• Do not have to install third-party

libraries (TPLs)

• Only works with C++ API
• Must use compatible compiler (see

SCALE README)
• Need to develop linking commands

(dependent libraries)

2. Link "app"
against your build
of SCALE

• Compiler compatibility
• Can use Fortran API

• Must install TPLs
• Takes time to build SCALE (but one time

cost)
• Need to develop linking commands

(dependent libraries)

3. Build "app" with
SCALE

• Compiler compatibility
• Can use Fortran API
• Least likely to break with SCALE

changes

• Must install TPLs
• Takes time to build SCALE
• Need to learn a little CMake/TriBITS

1111 2018 SCALE Users' Group Tutorial

Goals

• Use the C++ API from a standard RSICC Linux install

• Create a library and link an executable

• Get comfortable searching ORIGEN
– source tree
– docs online (https://wawiesel.github.io/OrigenAPI-Demo/)

• Learn where ORIGEN tests are

1212 2018 SCALE Users' Group Tutorial

Exercises
1. Load an ORIGEN reaction resource and output

some details (rr_output.cpp)
– Core/re/ReactionResource.h

– Core/io/ReactionResourceIO.h

– Core/io/tstReactionResourceIO.cpp

2. Create an ORIGEN concentration file and view in
Fulcrum (myf71.cpp)

– Core/dc/StateSet.h

– Core/dc/Concentrations.h

3. Solve a decay problem using the Material API
(decaythis.cpp)

– Core/dc/Material.h

– Solver/SolverSelector.h

1313 2018 SCALE Users' Group Tutorial

Exercises (cont.)
• We have created a simple CMake project for each exercise

to execute method #1: Link "app" against standard SCALE
install from RSICC.

• Each project should link and compile.

1414 2018 SCALE Users' Group Tutorial

Summary

• We hope you got a "feel" for the API today
– Hardest part is linking
– Next hardest part is knowing which part of the API to use

• Our plan
– Origen::Material will become the main entry point with dependency on

a few other interfaces (Solver, Library, TransitionMatrix)
– Continue to extend Resources to have more input/output file formats
– Origen::Concentrations is the main storehouse for isotopic results
– Emission calcs and unit conversions are actions on Concentrations

	Linking External Software �to the ORIGEN API�2018 SCALE Users' Group Tutorial
	Who uses the ORIGEN API?
	Dependencies
	Capabilities
	Layout
	Layout (cont.)
	ORIGEN API story
	ORIGEN API story (cont.)
	ORIGEN API story (cont.)
	Link your "app" to ORIGEN
	Goals
	Exercises
	Exercises (cont.)
	Summary

