Continuous-Energy TSUNAMI Sensitivity Capabilities in SCALE 6.2

ORNL is managed by UT-Battelle for the US Department of Energy

Introduction to Sensitivity Coefficients

 Sensitivity coefficients provide insight on the sources and impact of uncertainty in nuclear engineering models.

Introduction to Sensitivity Coefficients

• Sensitivity coefficients describe the fractional change in a response that is due to perturbations, or uncertainties, in system parameters.

$$S_{R,\Sigma_x} = \frac{\delta R/R}{\delta \Sigma_x / \Sigma_x}$$

 The SCALE TSUNAMI code calculates sensitivity coefficients for critical eigenvalue or reaction rate ratio responses:

$$R = k_{eff}$$

$$R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

3 Integrating Nuclear Criticality Experiments into Differential Nuclear Data Evaluations

TSUNAMI Sensitivity Methods

- 1. TSUNAMI-1D Deterministic, Multigroup
- 2. TSUNAMI-2D Deterministic, Multigroup
- 3. TSUNAMI-3D
 - Multigroup TSUNAMI-3D Monte Carlo, Multigroup
 - Iterated Fission Probability (IFP) Method Monte Carlo, Continuous-Energy
 - CLUTCH Method Monte Carlo, Continuous-Energy

 TSUNAMI offers several options for sensitivity calculations based on the desired level of accuracy and runtime.

Continuous-Energy Resolution

 Continuous-energy capabilities allow for a better understanding of the phenomena that contribute to system uncertainty.

Applications for Sensitivity Analysis

Design Optimization

Reactor Design, Isotope Production

- Uncertainty Propagation and Quantification
 Criticality Safety, Reactor Design
- Identifying Relevant Benchmarks for Licensing Applications Criticality Safety, Reactor Design
- Anticipating Modeling and Simulation Code Biases
 Criticality Safety, Reactor Design, etc.

Sensitivity Applications: Design Optimization The Long Road to ²⁵²Cf

Sensitivity Applications: Uncertainty Propagation

 Sensitivity coefficients can be combined with cross section uncertainties to quantify the uncertainty in a response.

The Sandwich Equation

Sensitivity Applications: Benchmark Similarity Assessment

• The similarity coefficient, c(k) or c_k , describes the amount of nuclear data-induced uncertainty that is shared by two systems.

 The TSUNAMI-IP code calculates c_k values between a target application and reference benchmark experiments.

TSUNAMI in Practice

- U.S. Nuclear Regulatory Commission
 - Nuclear Materials Safety and Safeguards, Nuclear Reactor Regulation, Office of New Reactors
- U.S. DOE / Areva / Duke Energy
 - Mixed Oxide Fuel Fabrication Facility
- Candu Energy
 - ACR-1000 Design Validation
- Atomic Energy of Canada, Ltd.
 - ACR-700 NRC Review/PIRT
- U.S. DOE
 - Yucca Mountain post-closure criticality safety
- Global Nuclear Fuels
 - Transportation package licensing
- Svensk Kärnbränslehantering AB
 - Swedish used fuel repository
- Organization for Economic Cooperation and Development, Nuclear Energy Agency
 - International Expert Groups

Sensitivity Applications: Data Assimilation

 Experimental benchmark data is used to improve the accuracy of the initial computed responses.

- This assimilation consistently adjusts the underlying nuclear data.
- This capability will be discussed further in the TSURFER presentation.

National Laboratory

Calculating Sensitivity Coefficients

Relative sensitivity of k_{eff} to single energy group of a particular nuclide-reaction pair cross section, $S_{x,a}$, is expressed as:

$$S_{k,\Sigma_{x,g}} = rac{\partial k_{e\!f\!f} / k_{e\!f\!f}}{\partial \Sigma_{x,g} / \Sigma_{x,g}}$$

$$S_{k,\Sigma(\vec{r}\,)} \equiv rac{\partial k/k}{\partial \Sigma(ec{r}\,)/\Sigma(ec{r}\,)}$$

where

- ϕ = neutron flux;
- $\phi^{\dagger} =$ adjoint neutron flux
- $k = k_{eff}$, the largest of the eigenvalues
- A = operator that represents all of the transport equation except for the
- fission term
- B = operator that represents the fission term of the transport equation
- ${oldsymbol{\mathcal{I}}}=$ problem-dependent resonance self-shield macroscopic cross sections
- ξ = phase space vector; and
- $\langle \ \rangle$ indicate integration over space, direction and energy variables.

 $\frac{\partial A\left[\Sigma\left(\xi\right)\right]}{\partial\Sigma\left(r\right)} - \frac{1}{k} \frac{\partial B\left[\Sigma\left(\xi\right)\right]}{\partial\Sigma\left(r\right)} \phi\left(\xi\right)$

 $\left\langle \phi^{\dagger}\left(\overset{\mathsf{V}}{\xi}\right)\frac{1}{\iota^{2}}B\left[\Sigma\left(\overset{\mathsf{V}}{\xi}\right)\right]\phi\left(\overset{\mathsf{V}}{\xi}\right)\right\rangle$

Calculating Sensitivity Coefficients

• For a sample capture reaction (*cap.*), the First-Order Perturbation Equation reduces to something like:

$$S_{k,\Sigma_{cap.}} = \frac{\delta k/k}{\delta \Sigma_{cap}/\Sigma_{cap}} = \frac{\langle \Phi^{\dagger} \Sigma_{cap.} \Phi \rangle}{\frac{1}{k} \langle \Phi^{\dagger} \Sigma_{fis.} \Phi \rangle}$$

- Tallying reaction rates is relatively straightforward for a Monte Carlo code.
- The challenge is therefore tallying the forward and adjoint fluxes as a function of space, energy, and angle.

Calculating Sensitivity Coefficients

• For a sample capture reaction (*cap.*), the First-Order Perturbation Equation reduces to something like:

$$S_{k,\Sigma_{cap.}} = \frac{\delta k/k}{\delta \Sigma_{cap}/\Sigma_{cap}} = \frac{\langle \Phi^{\dagger} \Sigma_{cap.} \Phi \rangle}{\frac{1}{k} \langle \Phi^{\dagger} \Sigma_{fis.} \Phi \rangle}$$

- Tallying reaction rates is relatively straightforward for a Monte Carlo code.
- The challenge is therefore tallying the forward and adjoint fluxes as a function of space, energy, and angle.

CE TSUNAMI-3D Sensitivity Methods

Eigenvalue Sensitivity Calculations

- CLUTCH Method
- IFP Method

Generalized Perturbation Theory Sensitivities

- GEAR-MC Method: CLUTCH only
- GEAR-MC Method: CLUTCH + IFP (cet=5)

(cet=1)

(cet=2)

Things you need for a multigroup TSUNAMI-3D Calculation:

Why use Continuous Energy?

- CE TSUNAMI-3D uses cutting-edge Monte Carlo methods to calculate sensitivity coefficients, and requires:
 - No flux moment calculations
 - No spatial flux mesh (sort of)
 - No volume calculations
 - No problem-dependent cross section self-shielding
 - No implicit sensitivity effects
 - No adjoint transport simulation, just one forward simulation
- CE TSUNAMI-3D avoids the large memory footprints that can be required by multigroup TSUNAMI-3D.
- Use of continuous-energy physics more accurately models the physics of neutron interactions (see: the *read energy* input block).

H-1 Elastic Scatter Sensitivity 238-group CLUTCH VS Microgroup CLUTCH

U-238 Capture Sensitivity 238-group CLUTCH VS Microgroup CLUTCH

Why NOT use Continuous Energy?

- The simulation runtimes are usually longer than for multigroup TSUNAMI-3D.
- In many applications multigroup TSUNAMI-3D calculations already provide sufficient accuracy.
- Some problems may still require a spatial flux mesh, significant computational memory, and/or expert judgment.

CE TSUNAMI-3D Sensitivity Methods

Eigenvalue Sensitivity Calculations

- CLUTCH Method
- IFP Method

Generalized Perturbation Theory Sensitivities

(cet=1)

(cet=2)

(cet=4)

- GEAR-MC Method: CLUTCH only
- GEAR-MC Method: CLUTCH + IFP (cet=5)

Iterated Fission Probability Method

- The Iterated Fission Probability (IFP) method calculates adjoint-weighted tallies using the notion that the importance of an event is proportional to the population of neutrons present in the system during some future generation.
 - In practice, the IFP method can require storing reaction rate tallies for a significant number of generations.
 - In CE TSUNAMI-3D, the IFP method is used by setting: cet=2
 - The number of "latent generations" is set using the **cfp=#** parameter.

Illustration of the IFP process. Image courtesy of Brian Kiedrowski.

How Many Latent Generations Do We Need?

- IFP calculations should use somewhere between 2 and 20 latent generations to obtain accurate sensitivity tallies.
 - In practice, most simulations require between 5 and 10 latent generations.
- The memory footprint of SCALE IFP calculations scales linearly with the number of latent generations.
 - Users should use enough latent generations to obtain accurate sensitivity coefficients, but also as few as possible to minimize the simulation's memory footprint.

How Many Latent Generations Do We Need?

- IFP calculations should use somewhere between 2 and 20 latent generations to obtain accurate sensitivity tallies.
 - In practice, most simulations require between 5 and 10 latent generations.
- The memory footprint of SCALE IFP calculations scales linearly with the number of latent generations.
 - Users should use enough latent generations to obtain accurate sensitivity coefficients, but also as few as possible to minimize the simulation's memory footprint.

Let's Try CE TSUNAMI-3D

Priet Cult View Holf Help Reload godiva_example.inp Save godiva_example.inp as Close godiva_example.inp Print Cut Copy Pasts Undo Redo Find Image: Coll View Holf Help Filter Image: Coll View Holf Help Godiva_example.inp Filter Image: Coll View Holf Help Godiva_example.inp State Coll View Holf Help Godiva_example.inp Coll View Holf Help Godiva_example.inp Coll View Holf Help Godiva_example.inp Coll Coll View Holf Help Godiva_example.inp Godiva_example.inp	Eile Edit View Due Hele	SCALE	
Filter document © SCALE 6.2 © Run w godiva_example.inp acass5 2 godiva-k5 3 ce_v7_endf 4 read composition 5 u-234 1 0 0.000491995 300 end 6 u-235 1 0 0.002498 300 end 8 end composition 9 read geometry 10 global unit 1 11 sphere 1 1 8.741 2 end geometry 13 end data 14 end 15	Reload godiva_example.inp Save godiva_example	inp Save godiva_example.inp as Close godiva_example.inp Print Cut	Copy Paste Undo Redo Find
Line: 15. Col: 1 Validation Messages	Filter Godiva_example.inp	document SCALE 6.2 Run 1 =csas5 2 godiva-k5 3 ce_v7_endf 4 read composition 5 u-234 1 0 0.000491995 300 end 6 u-235 1 0 0.002498 300 end 7 u-238 1 0 0.002498 300 end 8 end composition 9 read geometry 10 global unit 1 11 sphere 1 1 8.741 12 end geometry 13 end data 14 end 15	Validation

Let's Try CE TSUNAMI-3D

• • •	**** SCALE		
File Edit View Run Help			
Reload godiva_example_IFP.inp Save godiva_examp	Ile_IFP.inp Save godiva_example_IFP.inp as Close godiva_example_IFP.inp Print Cut Copy Paste	⇒ ≫	
O Navigation	S godiva_example_IFP.inp*		
	document 📀 SCALE 6.2 📀 Run y		
> godiva_example_IFP.inp*	<pre>I =tsunami-3d-k5 2 godiva-k5 3 ce_v7_endf 4 read composition 5 u-234 1 0 0.000491995 300 end 6 u-235 1 0 0.00449996 300 end 7 u-238 1 0 0.002498 300 end 8 end composition 9 read parameter 10 cet=2 11 cfp=5 12 end parameter 13 read geometry 14 global unit 1 15 sphere 1 1 8.741 16 end geometry 17 end data 18 end</pre>		
	19 Line: 19, Col: 1 Valida:	tion Messages & 🔿)ak Ridg
			AKKIDU

IFP Method Memory Requirements

- The IFP method allows for very accurate sensitivity coefficient calculations, but sometimes encounters large computational memory footprints and long problem runtimes.
- For a model of a typical PWR with depletion isotopics...

38,000 unique isotope-regions

- × **12** reactions per isotope
- × 44 energy groups
- × 11 generations of storage
- × **10,000** particles per generation
- × 8 bytes per double
- = **17,656** gigabytes of memory

CE TSUNAMI-3D Sensitivity Methods

Eigenvalue Sensitivity Calculations

CLUTCH Method

• IFP Method

Generalized Perturbation Theory Sensitivities

- GEAR-MC Method: CLUTCH only
- GEAR-MC Method: CLUTCH + IFP (cet=5)

(cet=4)

(cet=1)

CLUTCH/Contributon Methodology

 The CLUTCH method calculates the importance of collisions by tallying how many fission neutrons are created by a particle after it leaves the collision:

$$\phi^{\dagger}(\tau_s) = \int_V G(\tau_s \to r) F^{\dagger}(r) \, dr,$$

...where:

 $G(\tau_s \rightarrow r)$ = The number of fission neutrons created at r by the neutron originating in the phase space τ_s .

F*(r) = The average importance of fission neutrons born at r, or:

$$F^{\dagger}(r) = \int_{E} \int_{\Omega} \frac{\chi(r, E)}{4\pi} \phi^{\dagger}(r, E, \Omega) d\Omega dE.$$

CLUTCH VS IFP

- The CLUTCH method is more efficient than IFP (both in terms of speed and memory usage).
- The downside to CLUTCH is that you need to compute F*(r).

Sensitiv	Sensitivity Method Memory Usage					
Model	IFP	IFP CLUTCH				
Fuel Pin	2,113 MB	1.06 MB	1,990			
Godiva	26 MB	0.12 MB	220			
HMF-025-005	1,675 MB	0.16 MB	10,470			
LCT-010-014	19,509 MB	25 MB	780			
NAC-UMS	21,201 MB	3,416 MB	6.2			

The F*(r) Function

- The CLUTCH Method uses an importance weighting function, F*(r), to compute multigenerational sensitivity effects.
- The F*(r) function describes the average response importance generated by fission neutrons born at location r.

• The F*(r) function can be calculated using the IFP method during inactive generations with no significant loss of accuracy and with significant memory savings.

The F*(r) Function

- The CLUTCH Method uses an importance weighting function, F*(r), to compute multi-generational sensitivity effects.
- The F*(r) function describes the average response importance generated by fission neutrons born at location r.

 The F*(r) function can be calculated using the IFP method during inactive generations with no significant loss of accuracy and with significant memory savings.

How to use CLUTCH with an F*(r) Mesh

- Set cet=1 to enable CLUTCH.
- Set cfp=# to set the number of latent generations for the IFP calculation that populates the F*(r) mesh.
- Consider increasing the number of inactive generations to allow the F*(r) mesh to converge.
- Set cgd=# to tell CE TSUNAMI-3D the ID of the GridGeometry mesh for F*(r).
- Make the GridGeometry mesh for F*(r).

Let's Try CE TSUNAMI-3D....with CLUTCH!

• • •	*** SCALE
File Edit View Run Help	
Reload godiva_example_CLUTCH.inp Save go	diva_example_CLUTCH.inp Save godiva_example_CLUTCH.inp as Close tab Print Cut Copy Paste Undo Redo >>>
😢 💿 Navigation	S godiva_example_CLUTCH.inp
	document 📀 SCALE 6.2 📀 Run 🗸
Filter	1 =tsunami-3d-k5
 godiva_example_CLUTCH.inp b document godiva_example_IFP.inp b document 	<pre>2 godiva-k5 3 ce_v7_endf 4 read composition 5 u-234 1 0 0.000491995 300 end 6 u-235 1 0 0.002498 300 end 8 end composition 9 read parameter 10 cet=1 11 cfp=5 12 cgd=10 13 end parameter 14 read geometry 15 global unit 1 16 sphere 1 1 8.741 17 end geometry 18 read GridGeometry 10 19 xlinear 19 -9 9 20 ylinear 19 -9 9 21 zlinear 19 -9 9 22 end GridGeometry 23 end data 24 end 25</pre>
	Line: 25, Col: 1 Validation Messages

Let's Compare our IFP and CLUTCH Sensitivities

Nuclide	IFP Sensitivity	CLUTCH Sensitivity	Difference (# Standard Dev.)
U-234	6.92E-03 ± 6.71E-04	6.37E-03 ± 2.68E-04	-0.76
U-235	8.09E-01 ± 5.18E-03	7.89E-01 ± 1.97E-03	-3.67
U-238	1.69E-02 ± 1.50E-03	1.61E-02 ± 5.43E-04	-0.46

- An F*(r) mesh with 1cm 2cm mesh intervals is generally sufficiently resolved to generate accurate sensitivity coefficients.
- The F*(r) mesh must only cover all fissionable regions in a problem.
- Setting cfp=-1 will run CLUTCH assuming that F*(r)=1 everywhere.
 > Useful for models of infinitely-reflected systems.
- Since the F*(r) mesh is generated during skipped generations, NSK should be adjusted so that the F*(r) tallies can converge.
 - In general, simulating between 1 and 100 inactive particle histories per F*(r) mesh interval will produce an accurate F*(r) tally.
 - Our Godiva problem used a mesh with 5,832 intervals (18×18×18); 5,832 mesh intervals × 100 histories per interval / 1,000 particles per gen. = ~500 skipped generations.

- An F*(r) mesh with 1cm 2cm mesh intervals is generally sufficiently resolved to generate accurate sensitivity coefficients.
- The F*(r) mesh must only cover all fissionable regions in a problem.
- Setting cfp=-1 will run CLUTCH assuming that F*(r)=1 everywhere.
 > Useful for models of infinitely-reflected systems.
- Since the F*(r) mesh is generated during skipped generations, NSK should be adjusted so that the F*(r) tallies can converge.
 - In general, simulating between 1 and 100 inactive particle histories per F*(r) mesh interval will produce an accurate F*(r) tally.
 - Our Godiva problem used a mesh with 5,832 intervals (18×18×18); 5,832 mesh intervals × 100 histories per interval / 1,000 particles per gen. = ~500 skipped generations.

- An F*(r) mesh with 1cm 2cm mesh intervals is generally sufficiently resolved to generate accurate sensitivity coefficients.
- The F*(r) mesh must only cover all fissionable regions in a problem.
- Setting cfp=-1 will run CLUTCH assuming that F*(r)=1 everywhere.
 > Useful for models of infinitely-reflected systems.
- Since the F*(r) mesh is generated during skipped generations, NSK should be adjusted so that the F*(r) tallies can converge.
 - In general, simulating between 1 and 100 inactive particle histories per F*(r) mesh interval will produce an accurate F*(r) tally.
 - Our Godiva problem used a mesh with 5,832 intervals (18×18×18); 5,832 mesh intervals × 100 histories per interval / 1,000 particles per gen. = ~500 skipped generations.

- An F*(r) mesh with 1cm 2cm mesh intervals is generally sufficiently resolved to generate accurate sensitivity coefficients.
- The F*(r) mesh must only cover all fissionable regions in a problem.
- Setting cfp=-1 will run CLUTCH assuming that F*(r)=1 everywhere.
 > Useful for models of infinitely-reflected systems.
- Since the F*(r) mesh is generated during skipped generations, NSK should be adjusted so that the F*(r) tallies can converge.
 - In general, simulating between 1 and 100 inactive particle histories per F*(r) mesh interval will produce an accurate F*(r) tally.
 - Our Godiva problem used a mesh with 5,832 intervals (18×18×18); 5,832 mesh intervals × 100 histories per interval / 1,000 particles per gen. = ~500 skipped generations.

Improving the CLUTCH Input

• • •	*** SCALE	
File Edit View Run Help		
Reload godiva_example_CLUTCH_improved.inp Sa	ave godiva_example_CLUTCH_improved.inp Save godiva_example_CLUTCH_improved.inp as Close tab Print C	ut Copy Paste »»
A Navigation	S godiva_example_CLUTCH_improved.inp	
W	document SCALE 6.2 Sun -	
Filter		
	=tsunami-3d-k5	
godiva_example_CLUTCH_improved.in	3 ce v7 endf	
	4 read composition	
	5 u-234 1 0 0.000491995 300 end	
	6 u-235 1 0 0.0449996 300 end	
	<i>u-238</i> 1 0 0.002498 300 end	
	end composition	
	10 cet=1	
	11 cfp=5	
	12 cgd=10	
	13 nsk= 500	
	14 gen=1000	
	15 fst=yes	
	17 read geometry	
	18 global unit 1	
	19 sphere 1 1 8.741	
_	20 end geometry	
	21 read GridGeometry 10	
	22 xlinear 19 -9 9	
	24 glipear 19 -9 9	
	25 end GridGeometry	
_	26 end data	
	27 end	
	28	
	Ln, col:	Validation Messages

- Setting the FST=yes parameter will produce a .3dmap file showing the F*(r) mesh that was calculated.
- At the end of the inactive generations, SCALE will summarize the convergence of your F*(r) mesh in a warning message.

499	1.03074E+00	1.00056E+00	1.05296E-03	6.11893E+00	6.45500E-01	
500	1.05307E+00	1.00067E+00	1.05612E-03	6.09369E+00	6.46667E-01	
F*(r) WARNIN	Convergence Stat G: Of the 36	tistics: 682 F*(r) mesh	intervals that	t scored tallic	es	
99 61 23 5	.19% of the F*(r .46% of the F*(r .76% of the F*(r .38% of the F*(r	 tallies cont tallies cont tallies cont tallies cont tallies cont 	tain more than tain more than tain more than tain more than	5% uncertaint 10% uncertaint 20% uncertaint 50% uncertaint	y; ty; ty; and ty.	
501	9.82646E-01	1.00063E+00	1.05461E-03	6.04676E+00	6.49000E-01	
502	9.64969E-01	1.00056E+00	1.05492E-03	6.17351E+00	6.51167E-01	

Updated Sensitivity Coefficients

Nuclide	IFP Sensitivity	CLUTCH Sensitivity	Improved CLUTCH Run
U-234	6.92E-03 ± 6.71E-04	6.37E-03 ± 2.68E-04 (-0.76 σ)	7.73E-03 ± 2.71E-04 (1.13 σ)
U-235	8.09E-01 ± 5.18E-03	7.89E-01 ± 1.97E-03 (-3.67 σ)	8.01E-01 ± 1.81E-03 (-1.46 σ)
U-238	1.69E-02 ± 1.50E-03	1.61E-02 ± 5.43E-04 (-0.46 σ)	1.80E-02 ± 5.68E-04 (0.71 σ)

TSUNAMI-3D Sensitivity Method Summary

	Multigroup TSUNAMI	IFP	CLUTCH
Accuracy	Good	Excellent	Excellent
Speed	Good	Good	Excellent
Efficiency	Excellent	Good	Excellent
Memory Requirements	Limiting	Limiting	Typically Fine
Ease of Use	Requires a Flux Mesh	Very Easy	Must Calculate <i>F*(r)</i>

CE TSUNAMI-3D Sensitivity Methods

Eigenvalue Sensitivity Calculations

- CLUTCH Method
- IFP Method

(cet=1)

(cet=2)

(cet=4)

• GEAR-MC Method: CLUTCH only

• GEAR-MC Method: CLUTCH + IFP (cet=5)

Generalized Perturbation Theory

 Generalized Perturbation Theory (GPT) estimates sensitivity coefficients for any system response that can be expressed as the ratio of reaction rates.

$$S_{R,\Sigma} = \frac{\delta R/R}{\delta \Sigma/\Sigma} \quad R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

 Calculating generalized sensitivity coefficients requires solving an inhomogeneous, or generalized, adjoint equation:

$$L^{\dagger}\Gamma^{\dagger} = \lambda P^{\dagger}\Gamma^{\dagger} + S^{\dagger}$$
$$S^{\dagger} = \frac{1}{R}\frac{\partial R}{\partial \phi} = \frac{\Sigma_{1}}{\langle \Sigma_{1}\phi \rangle} - \frac{\Sigma_{2}}{\langle \Sigma_{2}\phi \rangle}$$

- TSUNAMI offers several tools for performing GPT sensitivity analysis:
 - TSUNAMI-1D: Multigroup analysis using the XSDRN code.
 - TSUNAMI-2D: Multigroup analysis using the NEWT code.
 - TSUNAMI-3D: Continuous-energy analysis using the KENO-Va/VI codes.

Generalized Perturbation Theory

 Generalized Perturbation Theory (GPT) estimates sensitivity coefficients for any system response that can be expressed as the ratio of reaction rates.

$$S_{R,\Sigma} = \frac{\delta R/R}{\delta \Sigma/\Sigma} \quad R = \frac{\langle \Sigma_1 \phi \rangle}{\langle \Sigma_2 \phi \rangle}$$

• Calculating generalized sensitivity coefficients requires solving an inhomogeneous, or generalized, adjoint equation:

- TSUNAMI offers several tools for performing GPT sensitivity analysis:
 - TSUNAMI-1D: Multigroup analysis using the XSDRN code.
 - TSUNAMI-2D: Multigroup analysis using the NEWT code.
 - TSUNAMI-3D: Continuous-energy analysis using the KENO-Va/VI codes.

Generalized Perturbation Theory

- GPT sensitivities can be used to understand the sources and impact of nuclear data uncertainty in responses such as:
 - Relative powers
 - Isotope Conversion ratios
 - Multigroup cross sections
 - Fission ratios
 - Example: ²³⁹Pu(n,f)/²³⁵U(n,f)
 - Experimental parameters
 - Example: ²⁸ρ

(ratio of epithermal/thermal ²³⁸U capture rates in irradiation foils)

OECD UAM GPT Benchmark Phase 1-2 Results

NUMBER	EXPERIMENT	Туре	Format	Value	Xsec Uncert
1	k_infinity	keff	Relative	1.1083E+0	4.98551E-1 % dk/k
2	fission_grp_1	gpt	Relative	1.9155E-3	6.91925E-1 % dR/R
3	fission_grp_2	gpt	Relative	2.7748E-2	3.23440E-1 % dR/R
4	absorpt_grp_1	gpt	Relative	7.1637E-3	8.36728E-1 % dR/R
5	absorpt_grp_2	gpt	Relative	5.3702E-2	2.38082E-1 % dR/R
6	cornerrod_fpf	gpt	Relative	1.1458E+0	1.67147E-1 % dR/R

CE TSUNAMI-3D GPT Response Extension

Original GPT Responses

- Total cross section (MT = 1)
- Fission cross section (MT = 18)
- (n,γ) abs. cross section (MT = 102)
- Neutron prod. cross section (MT = 1452)
- Neutron flux

CE TSUNAMI-3D GPT Response Extension

Original GPT Responses

- Total cross section (MT = 1)
- Fission cross section (MT = 18)
- (n,γ) abs. cross section (MT = 102)
- Neutron prod. cross section (MT = 1452)
- Neutron flux

Updated GPT Responses

 Total cross section (MT = 1) Total scatter cross section (MT = 0) Elastic scatter cross section (MT = 2) Inelastic scatter cross section (MT = 4)• (*n*,2*n*) scatter cross section (MT = 16) Fission cross section (MT = 18)(MT = 101) Total absorption cross section • (n,γ) absorption cross section (MT = 102)• (*n*,p) absorption cross section (MT = 103)• (*n*,d) absorption cross section (MT = 104)• (*n*,t) absorption cross section (MT = 105)• (*n*,³He) absorption cross section (MT = 106) (n,α) absorption cross section (MT = 107) Neutron production cross section (MT = 1452)Flux-weighted CMM diffusion coefficient

Neutron flux

CAK RIDGE

Diffusion Coefficient Sensitivity Calculations: Cumulative Migration Method

 Developed by Liu in 2016 [1], the Cumulative Migration Method (CMM) allows for highly accurate diffusion coefficient calculations using the concept of "Migration Area":

$$M^{2} = \frac{D}{\Sigma_{r}} = \frac{1}{6}\bar{r}^{2} \qquad R(D_{CMM}) = \frac{\langle M^{2}\Sigma_{r}\phi\rangle}{\langle\phi\rangle}$$

• This method can face challenges when confronted with non-unit cell systems or non-cuboidal reflecting boundaries.

[1] Z. Liu, K. Smith, and B. Forget, "A Cumulative Migration Method for Computing Rigorous Transport Cross Sections and Diffusion Coefficients for LWR Lattices with Monte Carlo," *Proc. PHYSOR 2016*, Sun Valley, Idaho, May 1–5, 2016.

GPT Calculations in CE TSUNAMI-3D

- The generalized importance function for a response can be expressed as the sum of two terms: the intra-generation effect term and the inter-generational effect term.
 - The intra-generation effect describes how much importance a neutron generates after an event occurs.
 - The inter-generational effect describes the importance that is generated by the daughter fission neutrons of the original particle.

$$\Gamma^{\dagger}(\tau_{s}) = \frac{1}{Q_{s}} \langle \frac{1}{R} \frac{\partial R}{\partial \phi}(r) \phi(\tau_{s} \to r) \rangle + \frac{\lambda}{Q_{s}} \langle \Gamma^{\dagger}(r) P(r) \phi(\tau_{s} \to r) \rangle$$

- CE TSUNAMI-3D uses the **CLUTCH** sensitivity method to calculate the intrageneration term, and an Iterated Fission Probability-based approach to calculate the inter-generational term.
- For more background on this methodology, see:

C. M. Perfetti, B. T. Rearden, "Continuous-Energy Monte Carlo Methods for calculating Generalized Response Sensitivities using TSUNAMI-3D," in *Proc. of the 2014 International Conference on the Physics of Reactors (PHYSOR 2014),* Kyoto, Japan, September 28 – October 3, 2014.

GPT Calculations in CE TSUNAMI-3D

- The generalized importance function for a response can be expressed as the sum of two terms: the intra-generation effect term and the inter-generational effect term.
 - The intra-generation effect describes how much importance a neutron generates after an event occurs.
 - The inter-generational effect describes the importance that is generated by the daughter fission neutrons of the original particle.

$$\Gamma^{\dagger}(\tau_{s}) = \frac{1}{Q_{s}} \langle \frac{1}{R} \frac{\partial R}{\partial \phi}(r) \phi(\tau_{s} \to r) \rangle + \frac{\lambda}{Q_{s}} \langle \Gamma^{\dagger}(r) P(r) \phi(\tau_{s} \to r) \rangle$$

- CE TSUNAMI-3D uses the CLUTCH sensitivity method to calculate the intrageneration term, and an Iterated Fission Probability-based approach to calculate the inter-generational term.
- For more background on this methodology, see:

C. M. Perfetti, B. T. Rearden, "Continuous-Energy Monte Carlo Methods for calculating Generalized Response Sensitivities using TSUNAMI-3D," in *Proc. of the 2014 International Conference on the Physics of Reactors (PHYSOR 2014),* Kyoto, Japan, September 28 – October 3, 2014.

GPT Flattop Foil Response Sensitivity Coefficients F28/F25 Pu-239 Sensitivity Coefficients Sensitivity Coefficients

Flattop Total Nuclide Foil Response Sensitivities

Experiment	Response	Isotope	Direct Pert.	TSUNAMI-1D	GEAR-MC
F28 / F25	238U	0.8006 ± 0.0533	0.8024 (0.03 σ)	$\begin{array}{c} 0.7954 \ \pm \ 0.0018 \\ (\textbf{-0.10 } \sigma) \end{array}$	
	²³⁹ Pu	0.0528 ± 0.0043	0.0657 (2.99 σ)	$\begin{array}{c} 0.0561 \pm 0.0012 \\ (0.73 \ \sigma) \end{array}$	
Flattop	E27 / E25	238U	-0.1540 ± 0.0102	-0.1551 (-0.11 σ)	-0.1608 ± 0.0016 (-0.66 σ)
F377F23	²³⁹ Pu	0.0543 ± 0.0048	0.0736 (3.99 σ)	$\begin{array}{c} 0.0489 \pm 0.0010 \\ (-1.10 \ \sigma) \end{array}$	

How does the CE TSUNAMI-3D approach differ from other methods?

- Generalized Perturbation Theory Monte Carlo methods have been developed by Abdel-Khalik et al. for calculating generalized sensitivity coefficients in 3D, continuous-energy Monte Carlo applications, but these methods require performing multiple direct perturbation calculations and can require a large number of runs to calculate generalized sensitivity coefficients.
- This approach differs in that it:
 - > Requires no perturbation calculations and no knowledge of nuclear covariance data.
 - Because our approach is not perturbation-based, we can easily calculate energydependent sensitivity coefficients for multiple responses to all input nuclear data parameters in one continuous-energy Monte Carlo transport calculation.
 - The deterministic, sensitivity-based TSUNAMI-1D and TSUNAMI-2D GPT methods require at least one transport calculation per generalized response.

TSUNAMI-1D/2D GPT Sequences

Resonance cross-section processing (repeated for all cells)

2D discrete ordinates 2D discrete ordinates adjoint calculation S/U calculation for k_{eff} 2D discrete ordinates inhomogeneous adjoint calculation for each response S/U calculation for a userdefined response

CE TSUNAMI-3D GPT Sequence

3D Monte Carlo

$$L \phi = \lambda P \phi$$
$$L^{\dagger} \phi^{\dagger} = \lambda P^{\dagger} \phi^{\dagger}$$
$$L^{\dagger} \Gamma^{\dagger} = \lambda P^{\dagger} \Gamma^{\dagger} + S^{\dagger}$$

S/U calculation for *k*_{eff} and user-defined responses

Definitions Block

- Used to define reaction rates, or responses, for GPT sensitivities.
- mixture=# is used to define the material for the response.
 - multimix=#1 #2 #3 end is used to define responses containing multiple materials.
- ehigh=#1 and elow=#2 will create an energy window for this response.

read definitions response 5 nuclide=92235reaction=fission mixture=10 micro ehiqh=0.625 end response response 6 unity mixture=10 end response end definitions

Definitions Block

- reaction=# keyword is used to define the reaction of interest.
 - Omitting this keyword and entering "unity" will result in a flux response.
 - Reactions available in CE TSUNAMI-3D:
 - mt=1 (total XS)
 - mt=18 (fission)
 - mt=102 (n,gamma)
 - mt=452 (nu-bar)
- **nuclide=ZZAAA** will tally the response for only one nuclide.

read definitions response 5 nuclide=92235 reaction=fission mixture=10 micro ehigh=0.625 end response response 6 unity mixture=10 end response end definitions

SystemResponses Block

read systemresponses
ratio 1 title='U235-fis'
numer 5 end
denom 6 end
end ratio
end systemresponses

- Each response must have its own ratio # and end ratio input lines.
- The **numer** keyword is used to specify which Definition is in the response numerator.
- The **denom** keyword is used to specify which Definition is in the response denominator.

- The CE TSUNAMI-3D code within the SCALE 6.2 code package offers a variety of approaches for calculating sensitivity coefficients for both eigenvalue and GPT responses.
- The GPT TSUNAMI capabilities expand the range of applicability for SCALE S/U analyses.

Please contact: Chris Perfetti

perfetticm@ornl.gov

