Skip to main content
SHARE
Publication

Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering

Publication Type
Journal
Journal Name
Chemical Physics
Publication Date
Volume
465-466

Understanding the molecular behavior of water in spatially restricted environments is key to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrument resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250⩽T⩽290 K.