Skip to main content
SHARE
Publication

Development of Generalized Perturbation Theory Capability within the SCALE Code Package

Publication Type
Conference Proceeding

Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28ρ (epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239Pu(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark.