Skip to main content
SHARE
Publication

Facet dependent disorder in the pristine high voltage lithium–manganese-rich composite cathode

Publication Type
Journal
Journal Name
ACS Nano
Publication Date
Volume
8

Defects and surface reconstructions are thought to be crucial for the long-term stability of high-voltage lithium–manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occurs under harsh conditions, making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Li1.2Ni0.175Mn0.525Co0.1O2 (LNMCO) particles. Using atomic-resolution Z-contrast imaging and electron energy loss spectroscopy measurements, we show that there is indeed a significant amount of antisite defects present in this material, with transition metals substituting on Li metal sites. Furthermore, we find a strong segregation tendency of these types of defects toward open facets (surfaces perpendicular to the layered arrangement of atoms) rather than closed facets (surfaces parallel to the layered arrangement of atoms). First-principles calculations identify antisite defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites was observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni is the predominant cause of disorder. These insights suggest that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.