Skip to main content
SHARE
Publication

Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

Publication Type
Journal
Journal Name
Microporous and Mesoporous Materials
Publication Date
Volume
222

This work presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructures were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO2 capture.