Skip to main content
SHARE
Publication

Stability and Core-Level Signature of Nitrogen Dopants in Carbonaceous Materials

Publication Type
Journal
Journal Name
Chemistry of Materials
Publication Date
Volume
27
Issue
16

Nitrogen doping is an important strategy in tuning the properties and functions of carbonaceous materials. But the chemical speciation of the nitrogen groups in the sp2-carbon framework has not been firmly established. Here we address two important questions in nitrogen doping of carbonaceous materials from a computational approach: the relative stability of different nitrogen groups and their X-ray photoelectron spectrum (XPS) signatures of the core-level (N 1s) electron binding energies. Four types of nitrogen groups (graphitic, pyrrolic, aza-pyrrolic, and pyridinic) in 69 model compounds have been examined. Computed formation energies indicate that pyrrolic and pyridinic nitrogens are significantly more stable (by about 110 kJ/mol) than graphitic and aza-pyrrolic nitrogens. This stability trend can be understood from the Clar’s sextet rule. Predicted N 1s binding energies show relatively high consistency among each dopant type, thereby offering a guide to identify nitrogen groups. The relative stability coupled with predicted N 1s binding energies can explain the temperature-dependent change in the experimental XPS spectra. The present work therefore provides fundamental insights into nitrogen dopants in carbonaceous materials, which will be useful in understanding the applications of nitrogen-doped carbons in electric energy storage, electrocatalysis, and carbon capture.