Skip to main content
SHARE
News

Materials – Measuring and manipulating graphene

Neon atoms between graphene sheets poke the top sheet from below and stretch the crystalline lattice, forming a bubble at a pressure larger than that of the ocean at its greatest depth. The ORNL method can introduce large local strains into 2D lattices in cases where conventional methods fail.

January 4, 2017 – Researchers at Oak Ridge National Laboratory found a simpler way to measure adhesion between graphene sheets, compared to a sophisticated method used in a 2015 study: They measured how much graphene deflects when neon atoms poke it from below to create “bubbles.” Each bubble’s curvature encodes properties such as sheet flexibility and adhesion. “We discovered a new method to measure adhesion of layered materials at very small length scales,” said Petro Maksymovych. “It’s a simple way to probe a large number of two-dimensional materials and ask how their mechanical properties vary with modifications. It also opens an avenue for atomic-scale control over 2D materials without defects, which may prove useful to achieve their full potential in future technologies.” Stacking atomically thin materials opens a pathway toward new energy and electronic applications.