Skip to main content
SHARE
Publication

Accumulation-Driven Unified Spatiotemporal Synthesis and Structuring of Immiscible Metallic Nanoalloys...

Publication Type
Journal
Journal Name
Matter
Publication Date
Page Numbers
1606 to 1606
Volume
1
Issue
6

Accumulation-mediated chemical reactions are a ubiquitous phenomenon in nature. Here, we explore microbubble-induced accumulation of precursor ions to achieve surfactant-free synthesis of immiscible metallic nanoalloys and simultaneously pattern the nanoalloys into targeted architectures for their enhanced catalytic applications. Our unified spatiotemporal synthesis and structuring (US3) strategy, whereby millisecond-scale accumulation of the ions takes place in a highly confined laser-mediated microbubble trap (MBT), drives ultrafast alloy synthesis in sync with the structuring process. As a case in point, we employ the US3 strategy for the in situ surfactant-free synthesis and patterning of traditionally immiscible rhodium-gold (RhAu) nanoalloys. Stochastic random walk simulations justify the millisecond-scale accumulation process, leading to a 3-order reduction in synthesis time. The catalytic activity and structure-property relationship were evaluated using the reduction of p-nitrophenol with NaBH4. Our in situ synthesis and structuring strategy can be translated for high-throughput production and screening of multimetallic systems with tailored catalytic, optoelectronic, and magnetic functions.