Skip to main content
SHARE
Publication

Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores...

by Matthew C Wander, Kevin L Shuford
Publication Type
Journal
Journal Name
The Journal of Physical Chemistry C
Publication Date
Page Numbers
23610 to 23619
Volume
115

In this paper, a variety of alkali halide, aqueous electrolyte solutions in contact with charged, planar-graphite slit-pores are simulated using classical molecular dynamics. Size trends in structure and transport properties are examined by varying the choice of ions among the alkali metal and halide
series. As with the uncharged pores, system dynamics are driven by changes in water hydration behavior and specifically by variations in the number of hydrogen bonds per water molecule. Overall, the larger ions diffuse more rapidly under high surface charge conditions than the smaller ions. In particular, for the 1 nmslit, ion diffusivity increased by a factor of 4 compared to the uncharged case. Finally, a quantitative fit to the interfacial charge structure is presented, which confirms the presence of two distinct types of layers in an aqueous interface. This model indicates that the chemistry of the interface is able to create a small interfacial potential, and it shows how water molecules can rotate to increase charge separation in response to a surface potential.