Skip to main content
SHARE
Publication

Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photo...

Publication Type
Journal
Journal Name
Journal of Materials Chemistry A
Publication Date
Page Numbers
4700 to 4706
Volume
9
Issue
8

Graphitic carbon nitride (g-C3N4) possesses fascinating merits, but its practical applications are limited by the inferior properties of limited visible-light sorption, rapid recombination of photo-excited charge carriers and low electrical conductivity. Introduction of N-defects is an efficient approach to tune its optical properties, but strategies capable of creating abundant vacancies and simultaneously maintaining the highly crystalline architecture are still limited and highly desired. In this work, a facile construction methodology was demonstrated to afford g-C3N4 with abundant N vacancies, high crystallinity, a hydrophilic surface structure, a small particle size, and an increased surface area under neat and mild conditions. The essence of our approach lies in the treatment of the bulk g-C3N4 precursor with an alkaline salt (LiN(SiMe3)2) with a low melting point, moderate nucleophilicity, and easy removal procedures. The unique structural properties of the afforded ND-g-C3N4 allow for a significantly redshifted absorption edge and enhanced charge carrier separation, leading to superior photocatalytic hydrogen evolution performance three times that obtained by pristine g-C3N4. The modification strategy developed herein sheds light on the fabrication of g-C3N4-based materials with improved photocatalytic efficiency via efficient introduction of N defects, variation of the surface structure, and retention of the high crystallinity.