Skip to main content
SHARE
Publication

Application of step-response lambda tuning to proportional-integral controllers in water resource recovery facilities...

by Alexandria Gagnon, Kris Roger Elie Villez, Charles Bott
Publication Type
Journal
Journal Name
Water Practice & Technology
Publication Date
Page Numbers
2080 to 2095
Volume
18
Issue
9

Proportional-integral-derivative (PID) controllers in water resource recovery facilities (WRRFs) feedback control loops are commonplace. While simple to implement, such control loops are rarely tuned optimally or systematically. Heuristic tuning approaches are commonly applied with varying degrees of success using trial-and-error, ad hoc tuning rules, or duplication of tuning values from a similar system. However, there are effective methods, such as lambda tuning, produce acceptable tuning with limited effort. These are based on the step-response method, where a manual process perturbation is used to define the relationship between the manipulated and controlled variables. Based on such an experiment, a simple process model is constructed and used to determine the controller tuning values. In this work, we used the step-response method and lambda tuning for two control systems in full-scale WRRFs. This led to responsive and stable behavior of the controlled system as defined by the absolute average error of the controlled variable to setpoint and standard deviation of the manipulated variable. Tuning of feedback control loops can be completed successfully through a systematic approach, and this work suggests that tuning tools, like lambda, should be part of all wastewater treatment control engineers' toolbox.