Skip to main content
SHARE
Publication

Atomically Dispersed Co and Cu on N-Doped Carbon for Reactions Involving C–H Activation...

Publication Type
Journal
Journal Name
ACS Catalysis
Publication Date
Page Numbers
3875 to 3884
Volume
8
Issue
5

Atomically dispersed Co(II) cations coordinated to nitrogen in a carbon matrix (Co-N-C) catalyze oxidative dehydrogenation of benzyl alcohol in water with a specific activity approaching that of supported Pt nanoparticles. Whereas Cu(II) cations in N-doped carbon also catalyze the reaction, they are about an order of magnitude less active compared with Co(II) cations. Results from X-ray absorption spectroscopy suggest that oxygen is also bound to N-coordinated Co(II) sites but that it can be partially removed by H2 treatments at 523–750 K. The N-coordinated Co(II) sites remained cationic in H2 up to 750 K, and these stable sites were demonstrated to be active for propane dehydrogenation. In situ characterization of Cu(II) in N-doped carbon revealed that reduction of the metal in H2 started at about 473 K, indicating a much lower thermal stability of Cu(II) in H2 relative to Co(II). The demonstrated high catalytic activity and thermal stability of Co-N-C in reducing environments suggests that this material may have broad utility in a variety of catalytic transformations.