Skip to main content
SHARE
Publication

Atomically sharp jagged edges of chemical vapor deposition-grown WS2 for electrocatalysis...

by Wenshuo Xu, Gang Seob Jung, Wenjing Zhang, Andrew Thye Shen Wee, Jamie Warner
Publication Type
Journal
Journal Name
Materials Today Nano
Publication Date
Page Number
100183
Volume
18

Chemical vapor deposition (CVD)-grown 2D transition metal dichalcogenides can adopt faceted edges. To investigate how sharp these sites can be, we utilize aberration-corrected annular dark-field scanning transmission electron microscopy (ADF-STEM) to resolve the atomic structure of two-dimensional (2D) WS2 domains that show jagged edges. Nanoscale triangular edge structures with S zigzag terminations are observed. Both the peak and valley regions exhibit near-atomic sharpness. The peaks are as sharp as two atoms in width. Highly ordered valley sites display a minimum width of three atoms, and prospective single-atom valleys appear as two-atom-wide sites in the ADF-STEM contrast. Regarding the kinetics, density-functional theory (DFT) calculations indicate that the 2-W-atom peak would not evolve into a single-W-atom peak even though the latter configuration is also stable with a high enough binding energy under the growth conditions. These results help deepen our understanding of the possible structuring at the nanoscale and the atomic-scale limits of peaks and valleys formed via intersection of two zigzag edges. The enriched edge sites lead to higher catalytic activities for the hydrogen evolution reaction (HER).