Skip to main content
SHARE
Publication

Automated cassette-based production of high specific activity [203/212Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer

by Mengshi Li, Xiuli Zhang, Saed Mirzadeh, Roy Copping, Michael K. Schultz
Publication Type
Journal
Journal Name
Applied Radiation and Isotopes
Publication Date
Page Numbers
52 to 60
Volume
127
Issue
0

A method for preparation of Pb-212 and Pb-203 labeled chelator-modified peptide-based radiopharmaceuticals for cancer imaging and radionuclide therapy has been developed and adapted for automated clinical production. Pre-concentration and isolation of radioactive Pb2+ from interfering metals in dilute hydrochloric acid was optimized using a commercially-available Pb-specific chromatography resin packed in disposable plastic columns. The pre-concentrated radioactive Pb2+ is eluted in NaOAc buffer directly to the reaction vessel containing chelator-modified peptides. Radiolabeling was found to proceed efficiently at 85 °C (45 min; pH 5.5). The specific activity of radiolabeled conjugates was optimized by separation of radiolabeled conjugates from unlabeled peptide via HPLC. Preservation of bioactivity was confirmed by in vivo biodistribution of Pb-203 and Pb-212 labeled peptides in melanoma-tumor-bearing mice. The approach has been found to be robustly adaptable to automation and a cassette-based fluid-handling system (Modular Lab Pharm Tracer) has been customized for clinical radiopharmaceutical production. Our findings demonstrate that the Pb-203/Pb-212 combination is a promising elementally-matched radionuclide pair for image-guided radionuclide therapy for melanoma, neuroendocrine tumors, and potentially other cancers.