Skip to main content
SHARE
Publication

A bifunctional zeolitic porous liquid with incompatible Lewis pairs for antagonistic cascade catalysis...

Publication Type
Journal
Journal Name
Chem
Publication Date
Page Numbers
1 to 19
Volume
7
Issue
1

The emergence of porous liquids (PLs) opened opportunities to form unique antagonistic systems capable of fulfilling cascade reactions promoted by incompatible active sites in one pot, which is a long-term challenging subject in catalysis. Herein, unique bifunctional type III PL-based systems were facilely fabricated via assembly of zeolite nanosheets with ionic liquids. Rational structural design afforded PLs that feature high zeolite concentration, stable dispersion after 2 years, abundant cavity distribution, and involvement of antagonistic groups (acid and base sites) in separated and active form via steric hindrance control and electronic repulsion regulation. These unique properties worked cooperatively to fulfill the cascade deacetalization-Knoevenagel/Aldol condensation in one pot with superior catalytic efficiency outperforming the traditional systems. The key to success lies in the formation of bifunctional composites, transformation of zeolite from heterogeneous to homogeneous via surface modification, and rapid mass transfer ensured by the rigid porous architecture.